Alireza Afzal Aghaei
Graduate student at SBU
MSEtrain=0,MSEtest≫0
Theorem. Given a set of k+1 distinct data points
(x0,y0),…,(xj,yj),…,(xk,yk)
The Lagrange interpolation is defined as
L(x):=j=0∑kyjℓj(x)
where Lagrange Polynomials for 0≤j≤k have the property:
ℓj(xi)=δji={1,0,if j=iif j=i,
It can be seen that the Lagrange Polynomials for 0≤j≤k can be defined as:
ℓj(x):=0≤m≤km=j∏xj−xmx−xm=(xj−x0)(x−x0)⋯(xj−xj−1)(x−xj−1)(xj−xj+1)(x−xj+1)⋯(xj−xk)(x−xk)
The Lagrange Polynomials for 0≤j≤k can be defined as:
ℓjϕ(x):=0≤m≤km=j∏ϕ(xj)−ϕ(xm)ϕ(x)−ϕ(xm)
where ϕ is an arbitrary smooth function and sufficiently differentiable.
With different choices of ϕ(x), many new basis functions can be generated at different intervals:
Classic Polynomial ϕ(x)=x
Fractional Lagrange functions ϕ(x)=xδ
Exponential Lagrange functions ϕ(x)=ex
Rational Lagrange functions ϕ(x)=x−Lx+L
Fourier Lagrange functions ϕ(x)=sin(x)
By Alireza Afzal Aghaei