Diffeomorphic image registration taking topological differences into account

Metamorphosis on brain MRI containing Glioblastoma

Anton François

Supervised by

Joan Glaunès & Pietro Gori

Introduction

Metamorphosis

Constrained Metamorphosis

Segmentation with TDA

Introduction

Anton François - 23/05/2023

Image registration of medical images is an important step in many medical applications:

  • pre/post-surgical operation
  • multi-modality image fusion
  • longitudinal studies
  • statistical analysis (atlas construction)

Before

linear registration:

After

Image registration

Anton François - 23/05/2023

Diffeomorphic image registration:

Finding a smooth one-to-one (non-linear) deformation to be biologically plausible (no holes, shearing, tearing...)

But works only with healthy images...

Image registration

Anton François - 23/05/2023

Registration with topological changes

Healthy brain

 Brain with a glioblastoma

Anton François - 23/05/2023

Glioma registration problem

  • Necrosis : topological difference
  • Mass effect : morphological difference
  • Oedema : appearance difference 
  • Brain natural differences

MNI template

ET - GD enhancing tumour

ED - Peritumoural edematous/invaded tisue

NRC - Necrotic Tumour Core

Anton François - 23/05/2023

State of the art

            For glioma registration:

  • Cost-Function Masking (CFM) [Brett et al., 2001]
  • Inpainting method [Sdika and Pelletier, 2009]
  • Geometric Metamorphosis [Niethammer et al., 2012]
  • GLISTR: biophysical models to perform registration. [Gooya et al., 2011; Ali et al., 2012]
  • Deep-Learning: [Bône et al., 2020; Han et al., 2020b; Shu and et al, 2018; Wang et al., 2023]

LDDMM [Avants et al., 2008; Beg et al., 2005; Zhang and Fletcher, 2018] &

Metamorphosis [Holm et al., 2009; Trouvé and Younes, 2005]

We will base our registration on the methods:

Anton François - 23/05/2023

Source

Target

Automatic non-linear
 matching

With modern methods

LDDMM

Anton François - 23/05/2023

Source

Target

Automatic non-linear
 matching

LDDMM: Large Diffeomorphic Deformation Metric Mapping

With modern methods

Anton François - 23/05/2023

Let \(V\) be the Reproducing Kernel Hilbert Space (RKHS) of vector fields whose kernel is \(K\). We denote \(L: V \rightarrow V^*\) the Riesz operator such that \(\|v\|^2_V = ( Lv,v)\) .

Let \(K\) be the Gaussian reproducing kernel with \[K(x,y) = \exp\left( -\frac{|x -y|^2}{2\sigma^2}\right) \cdot \mathrm{Id}_{\mathbb{R}^d}\]

V is an admissible RKHS of vector fields.

Deformation as a flow of vector field

\[\partial_t \varphi_t = v_t \circ \varphi_t\]

\(v_t \in V, \forall t\in [0,1]\)

Anton François - 23/05/2023

\(G\) is a group of diffeomorphisms

The deformation defined from the ordinary differential equation:

\[\partial_t \varphi_t = v_t \circ \varphi_t; \quad \varphi_0 = \mathrm{Id}\]

with \(v_t \in V,\forall t\in [0,1]\),  is a diffeomorphism. We note \(\varphi^v \in G\) such a diffeomorphism.

\(G\) := Space of Deformations

Deformation as a flow of vector field

Anton François - 23/05/2023

\[\partial_t \varphi_t = v_t \circ \varphi_t; \quad \varphi_0 = \mathrm{Id}\]

Image transport (advection):  \[\partial_t I_t = v_t \cdot \nabla I_t \]

Deformed image

\(I_t = I_0 \circ (\varphi^v)^{-1}\)

The deformation acts on images.

Geodesic := Shortest path for the exact matching:

\[\mathrm{inf}_v \int_0^1 \|v_t\|_V^2 dt\]

Anton François - 23/05/2023

LDDMM can reach only images with same topology

Metamorphosis deforms images and adds intensity.

Making the registration of images B and C possible.

\[\partial_t I_t = v_t \cdot \nabla I_t\]

\[+ \mu z_t\]

Topology and appearances variations

Metamorphosis

Implementation

Anton François - 23/05/2023

Metamorphosis

A Metamorphosis on \(\mathcal I\) is a pair of curves \((\varphi_t, \psi_t)\), respectively on \(G\) and \(\mathcal I\), with \(\varphi_0 = \mathrm{Id}\).

\(G\) := Space of Deformations

\(\mathcal I\) := Space of images

\(\psi_t\) is the intensity changes evolution part: \(I_t = \psi_t \circ (\varphi_t)^{-1}\)

Anton François - 23/05/2023

Metamorphosis

$$\left\{\begin{array}{rl}v_t &= -\frac{\rho}{\mu} K_\sigma \star  (z_t \nabla I_t)\\ \dot z_t &= -\quad \nabla \cdot (z_t v_t)  \\ \dot I_t &= -\langle v_t , \nabla I_t\rangle + \mu z_t\end{array}\right.$$

Advection equation with source
Continuity equation

By computing the Euler-Lagrange equation of the exact matching cost :

 


and doing the variation with respect to \(I\) and \(v\) we obtain this set of geodesic equations:

 

[Trouvé & Younes, 2005]

$$ E_\mathrm M (I,v) =  \frac12\int_0^1 \|v_t\|_V^2 + \rho \|z_t\|_{L_2}^2  dt \quad s.t.\ I_0 = S, I_1 = T$$

Anton François - 23/05/2023

Metamorphosis Optimisation

via Geodesic shooting

$$\left\{\begin{array}{rl}v_t &= -\frac{\rho}{\mu} K_\sigma \star  (z_t \nabla I_t)\\ \partial_t z_t &= -\quad \nabla \cdot (z_t v_t)  \\ \partial_t I_t &= -\langle v_t , \nabla I_t\rangle + \mu z_t\end{array}\right.$$

We minimize the inexact matching cost :
$$ H_\mathrm M (I,v) = \frac1 2 \left\| I_1 - T \right\|_2^2 + \frac \lambda 2\int_0^1 \|v_t\|_V^2 + \rho \|z_t\|_{L_2}^2  dt $$

 

Geodesic Integration

\(z_0\)

\(I_1\)

Step 1:

Step 2:

We iterate over two steps:

Anton François - 23/05/2023

We minimize this cost :
$$ H_\mathrm M (I,v) = \frac1 2 \left\| I_1 - T \right\|_2^2 + \frac \lambda 2\int_0^1 \|v_t\|_V^2 + \rho \|z_t\|_{L_2}^2  dt $$

 

$$ \Leftrightarrow H_\mathrm M (z_0) = \frac1 2 \left\| I_1 - T \right\|_2^2 + \frac \lambda 2\left( \|z_0\nabla I_0\|_V^2 + \rho \|z_0\|_{L_2}^2\right)   $$

\(\nabla H_M\) and adjoint equations computed

with                     auto differentiation.

\(v_0 = - \frac \rho \mu K\star (z_0 \nabla I_0) \)

\(\|v_0\|_V+ \rho \|z_0\|_{L^2} = \|v_t\|_V +\rho \|z_t\|_{L^2} ,\forall t\in [0,1]\)

Metamorphosis Optimisation

via Geodesic shooting

Anton François - 23/05/2023

Lagrangian Formulation

$$x'(t) = v(t,x)$$

Lagrangian scheme

Not suitable for images

Eulerian scheme

\(I_{t+\delta_t} = I_t - \delta_t(v_t \times\nabla I_t)\)

Eulerian Formulation

$$\partial_t I(t,x) = - v(t,x) \cdot \nabla I(t,x)$$

Integration of the geodesics equations

Anton François - 23/05/2023

Schemes stability

Field aberations

We have to augment the number of time steps -> slow

Anton François - 23/05/2023

Semi-Lagrangian scheme principle

\(\partial_t I_t = v_t \cdot \nabla I_t + \mu z_t\)

Semi-Lagrangian scheme

\(I_{t+\delta_t} = \mathrm{Interp}(I_t,\varphi^{v_t}) + \delta_t \mu z_t\)

Anton François - 23/05/2023

Schemes stability

Image integration more stable

residual instabilities

Anton François - 23/05/2023

Schemes stability

Stable image

 Stable residual

Semi-Lagrangian scheme on residual

\(z_{t+\delta_t} = \mathrm{Interp}(z_t,\varphi^{v_t}) - \delta_t  z_t \mathrm{div}(v_t)\)

\(\partial_t z_t = - \mathrm{div} (z_t v_t)\)

- Full semi-Lagrangian -

Anton François - 23/05/2023

github.com/antonfrancois/Demeter_metamorphosis
  • The semi-Lagrangian scheme is more stable
  •  Open-Source Metamorphosis on the GPU, with autodiff.
  • Made for prototyping

Anton François - 23/05/2023

Problem solved ?

\(\rho\) and \(\mu\) control ratio between intensity changes and deformation

small intensity changes
big intensity changes

Problem solved ?

small intensity changes

big intensity changes

NO !

Residual entanglement!

Constrained

Metamorphosis

Anton François - 23/05/2023

Weighted Metamorphosis

$$\left\{\begin{array}{rl}v_t &= -\frac{\rho}{\mu} K_\sigma \star  (z_t \nabla I_t)\\ \dot z_t &= \quad - \nabla \cdot (z_t v_t)  \\ \dot I_t &= - v_t  \cdot \nabla I_t + \mu M_t z_t\end{array}\right.$$

Let \((M_t)_{t\in [0,1]}\) be a continuous temporal mask. By computing the Euler-Lagrange equation of the exact matching cost :


$$E_{\mathrm{WM}}(I,v) = \frac 12\int_0^1\|v_t\|_V^2 + \rho\langle z_t, M_t z_t \ \ \rangle_{L^2} dt \quad s.t.\ I_0 = S, I_1 = T  $$
and doing the variation with respect to \(I\) and \(v\) we obtain this set of geodesic equations:

 

\(\langle z_t, M_t z_t \rangle_{L^2}\)

\(M_t\)

Anton François - 23/05/2023

Source

Target

LDDMM

Metamorphosis

WM

A static mask gets stuck

Anton François - 23/05/2023

Weighted Metamorphosis

with a growing mask.

1. We set \(M_1\) as the topological difference segmentation.

2. We initialise \(M_0\) as a small ball at its center.

3. We register \(M_0\) to \(M_1\) using LDDMM.

Simple and realistic prior modelling:

Anton François - 23/05/2023

Source

Target

WM

WM w. Growing mask

Weighted Metamorphosis

with a growing mask.

Anton François - 23/05/2023

With textured images,

no mass effect is produced

WM fails on more realistic images

Anton François - 23/05/2023

\(M_t\) : Adding intensities

Oriented Metamorphosis

\(P_t\): Indicates where the vector field should be followed

\(w_t\): vector field to follow

We want to force the registration to follow the LDDMM field.

Anton François - 23/05/2023

Constrained Metamorphosis

Let \((M_t)_{t\in [0,1]}\) and \((P_t)_{t\in [0,1]}\) be two continuous temporal masks and \(w_t \in V\), an admissible vector field.

By computing the Euler-Lagrange equation of the exact matching cost:
$$ E_{\mathrm{CM}}(I,v) = \int_0^1 \|v_t\|_V^2 + \rho \langle z_t, M_t z_t \rangle_{L^2} +\gamma\| P_t(v_t - w_t) \|_V^2  dt $$
 

 

Oriented & Weighted

\(s.t., I_0 = S, I_1 = T\)

\[\| P_t(v_t - w_t) \|_V^2\]

Anton François - 23/05/2023

Constrained Metamorphosis

Let \((M_t)_{t\in [0,1]}\) and \((P_t)_{t\in [0,1]}\) be two continuous temporal masks and \(w_t \in V\), an admissible vector field.

By computing the Euler-Lagrange equation of the exact matching cost:
$$ E_{\mathrm{WM}}(I,v) = \int_0^1 \|v_t\|_V^2 + \rho \langle z_t, M_t z_t \rangle_{L^2} +\gamma\| P_t(v_t - w_t) \|_V^2  dt $$
 

 

Oriented & Weighted

\(s.t., I_0 = S, I_1 = T\)

\[\| P_t(v_t - w_t) \|_V^2\]

Oriented Norm:

We seak to estimate \(v_t\) similar to \(w_t\) where the mask \(P_t\) is positive.

Anton François - 23/05/2023

Constrained Metamorphosis

Let \((M_t)_{t\in [0,1]}\) and \((P_t)_{t\in [0,1]}\) be two continuous temporal masks and \(w_t \in V\), an admissible vector field.

By computing the Euler-Lagrange equation of the exact matching cost:
$$ E_{\mathrm{CM}}(I,v) = \int_0^1 \|v_t\|_V^2 + \rho \langle z_t, M_t z_t \rangle_{L^2} +\gamma\| P_t(v_t - w_t) \|_V^2  dt $$
and doing the variation with respect to \(I\) and \(v\) we obtain this set of geodesic equations:

 

Oriented & Weighted

\(s.t., I_0 = S, I_1 = T\)

Theorem:

$$\left\{\begin{array}{rl} v_t &= - \frac{\rho}{\mu (1 + \gamma P_t)} K \star (z_t\nabla I_t) + \frac{\gamma P_t }{1 + \gamma P_t} w_t\\ \dot z_t &= -\quad \nabla \cdot (z_t v_t)  \\ \dot I_t &= - v_t , \cdot\nabla I_t + \mu M_t z_t\end{array}\right.$$

\(\frac{\rho}{\mu(1+\gamma P_t)}\)

\(\frac{\gamma P_t}{1+\gamma P_t}\)

Anton François - 23/05/2023

CM

WM

\(I_t\)

\(I_t\) & \(\varphi^{v_t}\)

\(z_t\)

Constrained Metamorphosis

Results on ToyExamples

Anton François - 23/05/2023

On real data: BraTS 2021

  • Big data-set
  • 4 modalities
  • Glioblastoma ground truth segmentation

Registration validation using manually segmented ventricles (40 subjects).

 

Registered ventricles overlap measured with DICE score.

Constrained Metamorphosis

Weighted Metamorphosis

Anton François - 23/05/2023

Qualitative results

Anton François - 23/05/2023

Quantitative Results:

Lower the better
Higher the better

Anton François - 23/05/2023

BraTSReg pré- to post- operative registration

Lower the better
  • Big datasets of the same patients before and after surgery
  • Provides landmarks for registration validation

Anton François - 23/05/2023

Constrained Metamorphosis

conclusion & perspective

Framework to add priors into Metamorphosis

Slower because of the increasing complexity

Anton François - 23/05/2023

Constrained Metamorphosis

conclusion & perspective

Framework to add priors into Metamorphosis

We have shown that growth has to drive registration

Implement Deep-Learning Version.

Prior modelisation: We can incorporate more complex glioma model (e.g., GLISTR [Gooya et al.]) or a growth model [Kaltenmark, 2016].

Versatile: can be used for healthy/pathological or pathological/pathological applications or others.

Automatic prior selection

TDA Glioblastoma

Segmentation

Raphaël Tinarrage

TDA Glioblastoma Segmentation

Conclusion & Perspective

Anton François - 23/05/2023

Statistical Atlas: [Roux, 2019] Glioma frequency of apparition by voxels.

Allows to show correlations between glioma location and symptoms

Anton François - 23/05/2023

A Diffeomorphic Atlas represents shape variations, it is a Template along with  registrations from the template to each data points (images)

Given a sequence of images \(I^1,\dots,I^n\) and a notion of distance \(d\) corresponding to the length of a geodesic path in shape space. We compute the template \(T\) by minimising:

$$\mathcal M(T) = \frac{1}{2n} \sum_{k=1}^{n} d(T,I^k)^2$$

Speculations about atlases.

Can we build a  Metamorphic atlas ?

How to estimate \(T\) for a glioma data base?

A combination of a Statistical Atlas and a diffeomorphic shape space.

Anton François - 23/05/2023

Can we build a CM atlas ?

Not as it is: Because it is prior dependent, one can not define a single metric for a whole data set

Technically speaking, yes but there are interpretability issues.

Overall outcomes & Perspectives

 First open-source implementation of Metamorphosis, with novel integration scheme and GPU support.

Framework to register complex medical images with increased explainability using a simplitistic model.

Glioblastoma segmentation method using TDA

Published Articles:

  1. A. François, P. Gori, and J. Glaunès. Metamorphic image registration using a semi-lagrangian scheme. In SEE GSI, 2021
  2. A. François, M. Maillard, C. Oppenheim, J. Pallud, I. Bloch, P. Gori, and J. Glaunès. Weighted metamorphosis for registration of images with different topologies. In WBIR, pages 8–17, 2022
  3. M. Maillard, A. François, J. Glaunès, I. Bloch, and P. Gori. A deep residual learning
    implementation of metamorphosis.
    In IEEE ISBI, 2022

Th

an

k

You !

Anton François - PhD Defense

By Anton FRANCOIS

Anton François - PhD Defense

  • 97