Notes on OT

History

  • 1781, Monge - Initial approach
  • 1942, Kantorovich - Modern Approach
  • 1949, Dantzig - Solves problem numerically
  • 1991, Brenier - Further math. advances

Measures

Discrete Measure

\alpha = \sum_{i=1}^{n} \mathbf{a}_i \delta_{x_i}
α=i=1naiδxi\alpha = \sum_{i=1}^{n} \mathbf{a}_i \delta_{x_i}

General Measure

\int_{\chi} f(x)\textrm{d}\alpha(x) = \sum_{i=1}^{n} \mathbf{a}_i f(x_i)
χf(x)dα(x)=i=1naif(xi)\int_{\chi} f(x)\textrm{d}\alpha(x) = \sum_{i=1}^{n} \mathbf{a}_i f(x_i)
\int_{\mathbb{R}^d} h(x)\textrm{d}\alpha(x) = \int_{\mathbb{R}^d} h(x)\rho_{\alpha}\textrm{d}x
Rdh(x)dα(x)=Rdh(x)ραdx\int_{\mathbb{R}^d} h(x)\textrm{d}\alpha(x) = \int_{\mathbb{R}^d} h(x)\rho_{\alpha}\textrm{d}x

$$ \rho_{\alpha} = \frac{\textrm{d}\alpha}{\textrm{d}x} $$

Monge Problem

Given a Cost Matrix \( \mathbf{C}_{i,j}\) where \( i\in [[n]] \), \( j\in[[m]] \)

Assuming \( n = m \), the optimal assignment problem

seeks for a bijection \( \sigma \) in the set \( Perm(n) \) solving

$$ \min_{\sigma \in Perm(n)} \frac{1}{n} \sum_{i=1}^{n} \mathbf{C}_{i, \sigma(i)} $$

Monge Problem

$$ \min_{\sigma \in Perm(n)} \frac{1}{n} \sum_{i=1}^{n} \mathbf{C}_{i, \sigma(i)} $$

0 1 2 3 4 5
4 1 3 2 0 5

\( \sigma_1(i) \)

3 0 5 4 2 1

\( \sigma_2(i) \)

\( i \)

Find the best index combination between two measures such that cost is minimized

Monge Problem

OT

By crsilva

OT

  • 356