Gaia Network
Planetary-scale science and decision infrastructure
Applied Active Inference Symposium
August 22, 2023
Rafael Kaufmann, Dimitrije Marković
- Motivation: the Metacrisis and the Gaia Attractor
- Overview of architecture and applications
- Preview of (many) remaining challenges
- Open invitation to engage, contribute, lead!
Goals of this talk
Index
Index
The Metacrisis is here
Everything is connected (climate, food, security, biodiv)
× Self-evolving tech (inc. runaway AI)
× Coordination failure ("Moloch")
= Total risk for humanity and biosphere
Schmachtenberger: hypothesized attractors
- Chaotic breakdown
- Oppressive authoritarian control
Designing a third attractor
The Gaia Attractor
Goal: Resilience/stabilization of bio-socioeconomic system, subject to
- Multi-level system constraints (ex: planetary boundaries)
- Desirability (ex: preserve standards of living)
- Feasibility (ex: can be achieved from current initial conditions)
Complicators:
- Partial observability (info asymmetry)
- Scientific uncertainty
- Computability
- Control mostly via incentives & recommendations, not actuation
- ...
easy, right?
The Gaia Protocol
A decentralized hybrid AI-human system for planetary-scale decision support and automation
-
Human and artificial agents interacting in an open network
-
Facilitate consilience (model alignment) and coherence (goal alignment) at multiple levels/scales, up to global (survival of the system)
-
Built-in incentives and governance
-
Privacy-preserving
Index
Decentralized Digital Twins
Shared, verifiable, networked local models of real-world systems
Understand costs and benefits of strategies/projects
Better decisions: recommendations, negotiations, valuations...
Initial application: agroecology
-
Distributed non-iid data
-
Sparse
-
Heterogeneous
-
Private
-
Potentially unreliable
-
-
Localized, collaborative forecasting and planning
-
Personalized
-
Privacy preserving
-
-
Recommendations, not direct control
Desiderata
A practical implementation tackling real-world challenges:
Federated active inference agents
Fangorn: engine used by each Ent to inquire, learn, plan, and allocate resources
Gaia Protocol: language used by Ents to independently interact with their environments and each other
Gaia Network: mesh of AI agents called Natural Entities (Ents) that act as proxies for real-world systems
If we do this right, the Gaia Network approximates a single composite agent (more on this later)
Fangorn Overview
Highlights
Automatic Model Selection
Match on:
- Configurations
- Available observable modalities
Hierarchical generative models
Hyperprior
\( p\left( \pmb{\phi}\right) \)
Prior
\( \prod_{n=1}^Np\left( \pmb{\theta}_n | \pmb{\phi}\right)\)
Agent 2
Agent N
Agent 1
\( \pmb{C}^1_t = \left(\pmb{c}^1_1, \ldots, \pmb{c}^1_t \right) \)
\( p\left( \pi^1 \right) \)
\( p_{\pmb{\theta}_1}\left( \pmb{s}^1_t|\pmb{c}^1_{t}, \pmb{s}^1_{t-1}, \pi \right) \)
\( p_{\pmb{\theta}_1}\left( \pmb{o}^1_t| \pmb{s}^1_t \right) \)
Structured Variational inference
Ambrogioni, Luca, et al. "Automatic structured variational inference." International Conference on Artificial Intelligence and Statistics. PMLR, 2021.
\(x_1\)
\(x_2\)
\(x_3\)
\(x_4\)
\(x_5\)
\(x_6\)
\(x_7\)
\(p(\pmb{x})=\prod_{j=1}^kp_j\left( x_j|\pmb{\theta}_j(\pi_j) \right) \)
parent variables
\( \pi_j \subseteq \{ x_i\}_{i\neq j} \)
\(x_1\)
\(x_2\)
\(x_3\)
\(x_4\)
\(x_5\)
\(x_6\)
\(x_7\)
\(q(\pmb{x}|\Lambda, \pmb{\Alpha})=\prod_{j=1}^k q_j\left( x_j|\Omega^{\pmb{\alpha}_j}_{\pmb{\lambda_j}} \left[ \pmb{\theta}_j\right] \right) \)
\( \Omega^{\pmb{\alpha}}_{\pmb{\lambda}} \left[ \pmb{\theta}\right] = \pmb{\lambda} \odot \pmb{\theta} + \left( 1 - \pmb{\lambda} \right) \odot \pmb{\alpha}\)
P2P Federated inference
local data
\( \pmb{D}_n\)
local prior
\( p \left( \pmb{\theta_n|\pmb{\phi}}\right) \)
global posterior \( q\left(\pmb{\phi} \right) \)
local posterior
\( q\left(\pmb{\theta}_n \right) \)
local data
\( \pmb{D}_n\)
local prior
\( p \left( \pmb{\theta_n|\pmb{\phi}}\right) \)
global posterior \( q^{(i)}\left(\pmb{\phi} \right) \)
local posterior
\( q^{(i)}\left(\pmb{\theta}_n|\pmb{\phi} \right) \)
local data
\( \pmb{D}_n\)
local prior
\( p \left( \pmb{\theta_n|\pmb{\phi}}\right) \)
global posterior \( q\left(\pmb{\phi} \right) \)
local posterior
\( q\left(\pmb{\theta}_n \right) \)
local data
\( \pmb{D}_{n^\prime}\)
local prior
\( p \left( \pmb{\theta_{n^\prime}|\pmb{\phi}}\right) \)
global posterior \( q^{(i+1)}\left(\pmb{\phi} \right) \)
local posterior
\( q^{(i+1)}\left(\pmb{\theta}_{n^\prime}|\pmb{\phi} \right) \)
Node \( n \)
Node \(n^\prime \)
Gong, Jinu, Osvaldo Simeone, and Joonhyuk Kang. "Bayesian variational federated learning and unlearning in decentralized networks." 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2021.
Hyper-prior ConstrainTs
Academic studies
Expert
knowledge
Entmoot
Meta-analysis Model
Entmoot DB
Federated Parameter Store
Fangorn
Project-level
Agent Models
Project context and data
Project assessment and decision support
Project-level results
Global constrains on regression
Regression results
Global constrains on agents
Data Source reliability
Williams, Donald R., Stephen R. Martin, and Philippe Rast. "Putting the individual into reliability: Bayesian testing of homogeneous within-person variance in hierarchical models." Behavior research methods 54.3 (2022): 1272-1290.
\( p(y_{mj}|x) = \mathcal{N} \left(x, \sigma_{mj}^2 \right) \)
Source reliability
\( \rho_{mj} = \frac{\sigma_x^2}{\sigma_x^2 + \sigma^2_{mj}} \)
Simplified generative model
\( p(x) = \mathcal{N} \left( \mu, \sigma_x^2 \right) \)
Modality reliability
\( \rho_{m} = \frac{\sigma_x^2}{\sigma_x^2 + \frac{1}{M^2}\sum_j \sigma^2_{mj}} \)
\(m \in \{1, \ldots, M \} \) and \(j \in \{1, \ldots, K \} \)
Coming soon
- Category-theoretic model composition (Smithe, 2023)
- Category-theoretic model discovery (Sennesh et al, 2023)
- Machine-verifiable inference and planning (Kaufmann et al, unpublished)
- Automatic lit review (Kaufmann et al, unpublished)
- Integrating goals via constraints and satisficing (Simon, 1996)
- Knowledge economics (Hubbard, 2007)
- Multiscale ActInf agents via Theory of Mind and goal alignment (Kaufmann et al, 2021)
- ActInf over models of arbitrary HW+SW systems (Coy and Kaufmann, unpublished)
- Internalizing externalities with ActInf (Hesp and Kaufmann, unpublished)
Index
Case Study
AGROECOLOGICAL Modeling
- Data
- Satellite images (remote sensing)
- In situ data (farms and forests)
- Verbal attestation (farmers, auditors...)
- Prior knowledge (meta-analysis)
- Models
- Hemp farming
- Agroforestry
Agroecological model
\( \pmb{\varphi} \sim p\left( \pmb{\varphi} \right) \)
Global parameters
- EVI properties
- Sprouting properties
\(\vdots \)
Latent states - Plant growth model
- Plant count
- Plant size
- Survival rate
- Growth rate
\(\vdots\)
Observables
- Plant count
- Plant size
- Vegetation indexes
\( \vdots \)
Local parameters
- Growth parameters
- EVI intercept
- EVI slope
\(\vdots \)
\( \pmb{y}_t^n \sim p \left(\pmb{y}_t^n | \pmb{x}_t^n , \pmb{\theta}_n \right) \)
\( \pmb{\theta}_n \sim p\left( \pmb{\theta} | \pmb{\varphi} \right) \)
\( \pmb{x}_t^n = \pmb{f} \left( \pmb{x}_{t-1}^n, \pmb{c}_{t-1}^n, \pi_{t-1}^n, \pmb{\theta}_n \right) \)
Covariates
- Weather & physical risk
\(\vdots\)
\( \pmb{C}^n = \left( \pmb{c}_1^n, \ldots, \pmb{c}_T^n \right) \)
Policies
- Growth modulators
\(\vdots\)
\( \pmb{\pi}^n = \left( \pmb{u}_1^n, \ldots, \pmb{u}_T^n \right) \)
Meta-analysis model
\( \pmb{\varphi} \sim p\left( \pmb{\varphi} \right) \)
Global parameters
- EVI properties
- Sprouting properties
\(\vdots \)
Observables
- Experimental measurements
- Observational data
\( \vdots \)
Local parameters
- EVI intercept
- EVI slope
- Precisions
\(\vdots \)
\( y_k^d \sim \prod_i \rho_i \left( \pmb{c}_k, \pmb{\theta}^\prime_k \right)^{\delta_{y_k^d, i}} \)
\( \pmb{\theta}^\prime_k \sim p\left( \pmb{\theta}^\prime | \pmb{\varphi} \right) \)
\( \pmb{c}_k \)
for \( k \in \left\{1, \ldots, K \right \} \)
Covariates
- Features
- Interventions
\(\vdots\)
\( \pmb{y}_k^c \sim \mathcal{N}\left( \pmb{y}| h\left( \pmb{c}_k, \pmb{\theta}^\prime_k \right), \pmb{\sigma}_k^2 \right) \)
Prior predictive
Multi-model Federated inference
Academic studies
Expert
knowledge
Fangorn
Project-level
Agent Models
Entmoot
Meta-analysis Model
Global constrains on regression
Regression results
Project context and data
Multi-model Federated inference
Academic studies
Expert
knowledge
Fangorn
Project-level
Agent Models
Entmoot
Meta-analysis Model
Project context and data
Posterior estimates of global hyper-parameters
intercept
slope
Multi-model Federated inference
Academic studies
Expert
knowledge
Fangorn
Project-level
Agent Models
Entmoot
Meta-analysis Model
Project context and data
Posterior estimates of source reliability
Policy InfErence
Estimate possible action sequences from available data
Project Assessment UX
Index
〞
...for policy purposes we do not need exact empirical measures of the optimal scale. If one jumps from an airplane it may be nice to have an altimeter, but what one really needs is a parachute.
- Edward Fullbrook
"But what about...?"
- Scaling to global goals?
- Internalizing externalities?
Scaling to Global Goals:
Agents made of Agents
- Collective of interacting ActInf agents performs approximate inference at the ensemble level
- Theory of Mind + goal alignment: improve CI performance, eliminate ambiguity by actively exploiting diversity
Kaufmann, Rafael, Pranav Gupta, and Jacob Taylor. "An active inference model of collective intelligence." Entropy 2021, 23(7), 830; https://doi.org/10.3390/e23070830
INTERNALIZING externalities: the Preservation Game
- Ent infers true system state and uses it to credibly incentivize long-term positive outcomes
- Works even with high uncertainty and misinformation
- Successful against a variety of bot strategies, including collusion
Kaufmann, Rafael, Casper Hesp, 2022, unpublished
Partner Case Study
COVID-19 Policy Response
https://evolution.ml/demos/npidashboard/
Bringing it all together
- Interoperability: shared protocols to align decisions across contexts
- Reusability: libraries of diverse & tested components, standard "APIs"
Aug '23
Consortium launch
Oct '23
Protocol and reference architecture RFC
Dec '23
Protocol candidate; ecosystem funding program launch
Mid 2024
FOSS reference implementation
end 2024
Gaia OS
Some of Our contributors (so far)!
Help us build the planetary brain
Sign up at gaiaconsortium.org and/or reach out to rafael.k@digitalgaia.earth!
Together, we can design, build, and learn what it takes to achieve planetary regeneration.
The Gaia Network (Technical Deck)
By dimarkov
The Gaia Network (Technical Deck)
- 100