Taylor expansions for entropic transport
Flavien Léger
joint work with:
Pierre Roussillon, François-Xavier Vialard and Gabriel Peyré

Background on optimal transport
OT0(μ,ν)=π∈Π(μ,ν)inf∬c(x,y)dπ(x,y)
Primal formulation

Optimal transport
Π(μ,ν): probability measures with marginals μ and ν.
We assume that
Σ:=suppπ={(x,y(x)),x∈X}
Optimal transport


X
Y
Optimal transport
Dual formulation
OT0(μ,ν)=ϕ,ψsup∫ϕdν−∫ψdμ
s.t.
u(x,y):=c(x,y)+ψ(x)−ϕ(y)≥0

The c-divergence
u(x,y)=c(x,y)+ψ(x)−ϕ(y)≥0
Σ={(x,y):u(x,y)=0}
Example: c(x,y)=−x⋅y
u(x,y)=ψ(x)−ϕ(y)−x⋅y
=ψ(x∣x(y))
Bregman divergence
OTε(μ,ν)=π∈Π(μ,ν)inf∬c(x,y)dπ(x,y)+εH(π∣μ⊗ν)
Entropic transport
Primal formulation
πε vs π0?
Q U E S T I O N

X
Y
OTε(μ,ν)=ϕ,ψsup∫ϕdν−∫ψdμ−εln(∬e−ε1(c+ψ−ϕ)dμdν)
Dual formulation
Entropic transport
⟶πε(x,y)=e−ε1(c(x,y)+ψε(x)−ϕε(y))μ(x)ν(y)
Solve with Sinkhorn: ϕn→ψn→ϕn+1→…
Our question
π0 singular measure supported on Σ
πε smooth measure supported on X×Y
OT0(μ,ν)
OTε(μ,ν)


What's known
- In general ϕε→ϕ0as ε→0 (Nutz & Wiesel ’21, Berman ’21, N Gigli & L Tamanini ’18)
- For general costs OTε(μ,ν)≈OT0(μ,ν)−εln(2πε)d/2−εH(ν∣m) (S Pal ’19)
- For quadratic costs (Schrödinger problems )OTε(μ,ν)≈OT0(μ,ν)−εln(2πε)d/2−2ε(H(μ)+H(ν)) +8ε2∫01FI(ρt)dt (G Conforti & L Tamanini ’21)
Background on the Kim–McCann geometry
(YH Kim & RJ McCann ’10)
Riemannian metric g on Σ
c(x,y)+c(x+ξ,y+η)≤c(x+ξ,y)+c(x,y+η)
∣ξ∣,∣η∣≪1 yields


−Dxy2c(x,y)(ξ,η)≥0
Quantifying a matching's stability
Kim and McCann's idea:
consider g^=−Dxy2c as a semi-metric over all X×Y

Second fundamental form
h(U,V)=(∇^UV)⊥
Mean curvature H=tr(h) (a normal vector field)
(TΣ×TΣ→T⊥Σ)
Additional structure: para-Kähler manifold
(⋅)⊥ maps T⊥Σ to TΣ


Example: c(x,y)=−x⋅y
g^=(0IdId0)
u(x,y)=ψ(x)−ϕ(y)−x⋅y
=ψ(x∣x(y))
Bregman divergence
g=D2ψ
Hessian metric
flat metric
In summary, we have
On X×Y
On Σ
Extrinsic curvatures
g^ semi-metric
m^ volume form
∇^ Levi-Civita connection
R^ scalar curvature
g metric
m volume form
∇ Levi-Civita connection
R scalar curvature
h second fundamental form
H mean curvature
A new Laplace formula
∬X×Y(2πε)d/2e−u(x,y)/εf(x,y)dm^(x,y)=∫Σfdm+
ε∫Σ[−81Δ^f+41∇^Hf+161(∣H∣2−35∣h∣2−R+43R^)f]dm +ε2R(ε)
T H E O R E M
u vanishes on Σ

Σ
e−u(x,y)/ε
X
Y
Assumptions:
X=Y=Rd
0<λ≤D2u≤Λ
f and D2u∈W4,∞
Novelties:
1. Geometric expression
2. Quantitative remainder bound
∣R(ε)∣≤C ∥D2u∥W4,∞4∬X×Y(2πε/λ)d/2e−λ∣y−y(x)∣2/2ε∣D≤4f∣(x,y)dm^(x,y)
Taylor expansion of the potentials
divπ(∇V)=divπ(H⊥)
H : mean curvature, H⊥ tangent to Σ
Solve for V on Σ
π : optimal transport plan
(supported on Σ)
∫Σdivπ(ξ)fdπ=−∫Σξ⋅∇fdπ
D E F I N I T I O N

divπ(∇V)=divπ(H⊥)
ψε=ψ0+2εln(e−Vμm)+o(ε)
T H E O R E M
u(x,y)≈−εln(m(x)μ(x)m(y)ν(y)e−V(x)e−V(y)πε(x,y))
Assumptions:
X=Y=Rd
0<λ≤D2u≤Λ
Log-concavity control over μ and ν
(ψε)ε uniformly bounded in H5
Taylor expansion of the transport value
OTε(μ,ν)=OT0(μ,ν)−εln(2πε)d/2−εH(π∣m)
+8ε2 ∫Σ[∣∇ln(π/m)∣2+41R^+R+35∣h∣2−∣∇V∣2]dπ+o(ε2)
T H E O R E M
Example: Quadratic cost c(x,y)=∣x−y∣2
ε2 term was known (Conforti–Tamanini):
8ε2∫01FI(ρt)dt
8ε2 ∫Σ[∣∇ln(π/m)∣2+R+35∣h∣2−∣H∣2]dπ
We found:
Strategy of proof
ψε : solution to dual problem ψmaxJε(ψ) ψε : competitor
Proof strategy
Step one
c∥∇h∥L22−εc∥∇h∥H32≤−δ2Jε(ψ)(h,h)
Step two
Choose competitor ψε such that
δJε(ψε)h≤Cε2∥∇h∥H3
Implies
c∥∇ψε−∇ψε∥L22−εc∥∇ψε−∇ψε∥H32≤−⟨δJε(ψε)−δJε(ψε),ψε−ψε⟩
Thanks!
The research leading to these results has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement no. 866274)
(gt CalVa 2021-09-27) Taylor expansion entropic transport
By Flavien Léger
(gt CalVa 2021-09-27) Taylor expansion entropic transport
- 603