Dimentionality reduction and classification over MRI anatomical images using PCA

  • Too many features while the availability of training examples is not infinite

             E.g. 3D Image processing 256*256*256 = 16777216 features

  • As the number of feature or dimensions grows, the amount of data we need to generalise accurately grows exponentially. 
  • Sometimes, most of these features are correlated and hence redundant
  • Feature selection & Feature extraction                                                 

Avoid curse of dimensionality:

  • Reduce computational time and space required
  • Ease of fitting models with high accuracy (bye to over-fitting)
  • Possibility to visualize the data when reduced to 2D or 3D

 Some dimensionality reduction techniques:

  • ICA (independent source finding)
  • SVD (efficient computation of PCA)
  • PCA (correlated variables to linearly uncorrelated variables)

 

Why dimensionality reduction...

Data & Data Structure

  • MRI brain images (volumetric representation)
    • NIfTI (.nii) files
    • Size: 17.3 GB
    • 1113 samples (brains)
    • Preprocessed version of data
      • Skull stripping.
      • Normalized.

The human connectome project, 1113 subjects’ brain T1w structural images. These 3D MPRAGE (this sounds nice) images obtained from Siemens 3T platforms using a 32-channel head coil. 

Cropping

cropped = data[50:205,60:225,30:225] #155x165x195

data = img.get_data() #256x256x256

Resize

(155, 165, 195) array  #4987125 voxels
(50, 50, 50) array #125000 voxels

   resampled = zoom(cropped, (50/cropped.shape[0], 50/cropped.shape[1] , 50/cropped.shape[2])

Flatten

(50, 50, 50) array #125000 voxels

vector = array.flatten()

(125000)array #125000 voxels

256x256x256

155x165x195

50x50x50

Original

Cropped 

Resized

50x50x50

1113x125000

Save

1113 x 125000

1113

1

Flatten

file.npy

jupyter notebook

Loading, cropping , resizing and saving

50x50x50

1113x125000

ML methods

1113

1

Flatten

SVM

KNN

PCA

SVM

Principal Component Analysis

(PCA)

What is PCA

  • Finding correlation between variables. 
  • Separating samples on a dataset.
  • Eigenvalues and eigenvectors (axes of subspace)

Principal Component Analysis (PCA) is a dimension-reduction tool that can be used to reduce a large set of variables to a small set that still contains most of the information in the large set.

Visually

If more than 4 columns...

  • PCA(1113x125000)

 

Reduce the amount of features from the original data to a serie of principal components that hold the information of the variance (axis of subspace)

EigenBrains

  • (PCA(125000x1113))

 

Try to find a set of "standardized brain ingredients".

Feature extraction

Feature extraction

  • Loading data
  • Applying PCA choosing amount of components
  • Plotting
  • Reconstructing data from components

import numpy as np
to_save_load=np.load("to_save.npy")
to_save_load.shape

(1113, 125000)

Loading data

from sklearn.decomposition import PCA
pca = PCA(n_components=10)#% of variance or number
principalComponents = pca.fit_transform(to_save_load)

(1113, 10)

Applying PCA

l = pca.explained_variance_ratio_

sum(l)#0.412558136188802

Plotting

import pandas as pd
subjects = pd.read_csv('subjects.csv')
columns = subjects[['Subject','class']]
labels= columns.set_index('Subject').T.to_dict('list')

import os
dirs = os.listdir( "brain_nii" )

  • Getting Colors

{585256: [-1], 585862: [-1], 586460: [-1], 587664: [-1], 588565: [1],...}

colors = []
for name in dirs:
    id,ext = name.split('.')
    try:
        colors.append(labels[int(id)][0])
    except:
        colors.append(0)

[1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1,...] #1 ,0(unlabeled) ,-1

Data reconstruction

dim=50
approximation = pca.inverse_transform(principalComponents)
restored = approximation.reshape(-1,dim,dim,dim)

(1113, 50,50,50)

10

100

500

0.41

0.81

0.59

Eigen brains

  • What is an Eigen brain 
  • Applying PCA
  • Plotting

EigenBrains??

Applying PCA

1113x125000

125000x1113

125000x809

Transpose

PCA(99.9)

Reshaping

125000x809

Transpose

Reshape

50x50x50

eigen brain 809

eigen brain 1

Plotting

0.417
0.069
0.035
0.022
1
2
3
4

Separate classes

class1 = frame[(frame['class']== 1)]
print("Total class 1:", len(class1))
class2 = frame[(frame['class']== 0)]
print("Total class 0:", len(class2))

Total class 1: 550

Total class 0: 558

Average brains

from sklearn.preprocessing import normalize

average_brain1 = normalize(class1).mean(0)
average_brain2 = normalize(class2).mean(0)
avg_vol1 = average_brain1.reshape(50,50,50)
print(avg_vol1.shape)
avg_vol2 = average_brain2.reshape(50,50,50)
print(avg_vol2.shape)

(50, 50, 50)

(50, 50, 50)

c1

c2

diff

class1

class2

3D volume (fail)

jupyter notebook

PCA , Eigen brains

Classification

  • Data pre-processing
    • a bit more about the data.
  • Resampling and hyperparameter tunning
    • cross validation
    • testing with different parameter values
  • Models fittings
    • underfitting and overfitting
    • convergence

Post-PCA Data Proprocessing

After PCA:

  • Data set of dimension 1113x1062 ('PCA.npy')

 

 

 

 

  • Data in the form of array (npy format)

 

 

 

 

 

 

 

Clasification

  • Data label of dimension 1113x1 ('Y.npy')
  • Label 1 represents positive brains
  • Label -1 represent negative brains
  • Label 0 represent unlabeled brains 

 

Post-PCA Data Proprocessing

Post-PCA Data Proprocessing

-Store the index of unlabeled examples & Remove them from the data set

 

-Replace examples of label -1 with 0 for classification training process (it is better to change to dummy label 0 and 1)

 

-Concatenate data set with the corresponding labels, rename the columns as PCA1, PCA2,....,PCA1062,CLASS

Post-PCA Data Proprocessing After PCA: Data set of dimension 1113x1062 ('PCA.npy')         Data in the form of array (npy format)               Clasification

Post-PCA Data Proprocessing

  • Data label of dimension 1113x1 ('Y.npy')
  • Label 1 represents positive brains
  • Label -1 represent negative brains
  • Label 0 represent unlabeled brains 

Cleaning data

  • Remove unlabeled data 
  • Change labels
  • Concatenate data vs labels 
  • Evenly distribute data

Load Data & label data

(Remove unlabeled samples from the data set)

data=pd.DataFrame(np.load('PCA.npy'))

y=np.load('Y.npy')
y=pd.DataFrame(y)

dataset=pd.concat([data,y],axis=1)
index_remove=list(y[y[0]==0].index)
print(index_remove)

dataset=dataset.drop(index_remove)

[71, 239, 277, 330, 529]

Cleaning data

Replace examples of label -1 with 0 for classification training process (it is better to change to dummy label 0 and 1)

dataset['class'].replace(-1,0,inplace=True)

Cleaning data

Change labels

Rename the columns as PCA1, PCA2,....,PCA1062,CLASS

a=['PCA' + str(i+1) for i in range(1063)]

a[-1]='CLASS'  

dataset.columns=a

Cleaning data

Evenly distribute data

Problem: Dataset is organized by example labels

class1 = dataset[(dataset['CLASS']== 1)]
print("Total class 1:", len(class1))
class0 = dataset[(dataset['CLASS']== 0)]
print("Total class 0:", len(class0))
df = []

for i in range(550):     

    df.append(class1.iloc[i].values)
    df.append(class0.iloc[i].values)
for j in range(550,558):
    df.append(class0.iloc[i].values)

class1 = dataset[(dataset['class']== 1)]

class2 = dataset[(dataset['class']== 0)]

Final processed data

np.save('X_y.npy',df)

  • Save the processed data in .npy
  • Load the final data

data=pd.DataFrame(np.load('X_y.npy'))

data.iloc[:,-1]=data.iloc[:,-1].apply(lambda i: int(i))

  • Assign value to independent  and dependent variables 

y=np.array(data.iloc[:,-1].replace(-1,0)).ravel()
X=np.array(data.iloc[:,:-1])

Resampling Methods

The process of repeatedly drawing samples from data and refitting a given model on each sample

Resampling methods help:

  • Learn more about the fitted model
  • Estimates more accurately the error or accuracy for future data
  • Estimates the bias and standard deviation of the hypothesized parameters 
  • Avoids over-fitting

But: 

  • Computationally expensive
  • Underestimate or overestimate the real error

 

 

 

Resampling Methods

Techniques:

  • Cross Validation

          + Validation set

          + Leave-one-out cross-validation (LOOCV)

          + K-fold cross validation

  • The Bootstrap

     

Resampling Methods

Validation Set

  • Training data (70%): fitting purpose
  • Validation set (20%): how good is the model for future data
  • Test set (10%): generalization

 

train_percentage = 0.7
validation_percentage = 0.2
test_percentage = 0.1

1108  examples

Resampling Methods

Validation Set

 

Problem: High bias and variability in error/accuracy between the splits.

E.g. For Support Vector Machine using Linear Kernel

 

 

Random split 1:

 

Random plit 2:

 

Random split 3:

The result highly dependent on 1 split is potentially biased

Resampling Methods

          Leave-one-out cross-validation (LOOCV)

 

Leave-one-out cross-validation withholds only a single observation for the validation set.

 

 

Okay, for our data set, at least 1103 times the model is fit!!!

Resampling Methods

K-fold cross validation

 

  • The technique that randomly divides the whole data set into k subsets, groups or folds (k can be freely chosen)
  • Each of k folds can be used as test set while other k-1 folds as training set.

Resampling Methods

K-fold cross validation

 

Advantage:

  • Less computationally expensive
  • More accurate estimation for future data
  • Easy to apply
  • Applicable to large data

Disadvantage:

  • Prone to underestimation of real error/overestimation of accuracy
  • Not really effective for small data set

K-fold cross validation

from sklearn.model_selection import KFold

kf = KFold(n_splits=5)

kf.get_n_splits(X)

for train_index, test_index in kf.split(X):              train_index

      test_index

K-fold cross validation

Assign train_index,test_index to form

  • X_train, y_train
  •  X_test, y_test

for train_index, test_index in kf.split(X):


       X_train, X_test = X[train_index], X[test_index]


       y_train, y_test = y[train_index], y[test_index]   

Model fittings

  • Logistic Regression using   Regularization method (Ridge regression)
  • Support Vector Machine with Linear Kernel
  • Support Vector Machine with Gaussian Kernel
  • K-nearest neighbors (k-nn)
  • Neural Network

Model fittings

Problems: Over-fitting vs Under-fitting

Bias:

  • how closeness is our predictive model’s to training data
  • very little attention to the training data and oversimplifies the model

​          =>high error on training and test data

Variance:

  • variability of model prediction for a given data point or a value showing spread of our data
  • a lot of attention to training data and does not generalize on new data

          => perform very well on training data but badly on test data

Model fittings

Underfitting happens when a model unable to capture the underlying pattern of the data => high bias, low variance

Overfitting happens when model captures the noise along with the underlying pattern in data. In other words, our model is trained a lot over noisy data => low bias, high variance

Model fittings

Why over-fitting:

  • Too complex models, too many features
  • Too small training data set
  • Too small regularization term

   ...

Why under-fitting:

  • Too simple model while the data are too complex
  • Too large regularization term

Model fittings

Logistic Regression

  • Also called Sigmoid Function
  • In classification problem, the models should better output the prediction values over (0,1) => no sense for predicted values > 1 or < 0

       E.g. 0 as non-spam email

              1 as spam email

  • Sometimes, linear regression does not work well (classification is not actually a linear function)

​        => binary classification problem

 

Logistic Regression

Apply Sigmoid or Logistic Function

where:

Hypothesis or predicted output:

Logistic Regression

Cost function

To address overfitting as our dataset includes up to 1062 features

          => L1 Regularization term added

Logistic Regression using  Regularization (Ridge regression)

Note:

Too large lambda could lead to under-fitting

Too small lambda could keep the model still over-fitting

Logistic Regression

Apply Logistic Regression

from sklearn.linear_model import LogisticRegression

def log_reg(X_train,X_test,y_train,y_test,reg_term):
    classifier = LogisticRegression(solver='liblinear',penalty='l1',C=(1/reg_term),fit_intercept=True,max_iter=500)


    classifier.fit(X_train,y_train)


    return classifier.score(X_train,y_train),classifier.score(X_test,y_test)

Return the accuracy rate of the model over training and test set

Note:

C=1/(regularization term)

Logistic Regression

Define the best regularization term "lambda" for logistic regression model using cross validation

Number of folds: k=5

kf = KFold(n_splits=5)

List of regularization term :

param_logreg=[0.001*10**i for i in range(10)]

Logistic Regression

Step 1: find the best range with the best performance over both training and test set

training_acc_col=[]
test_acc_col=[]

for train_index, test_index in kf.split(X):
    training_acc_col.append([])
    test_acc_col.append([])
    X_train, X_test = X[train_index], X[test_index]
    y_train, y_test = y[train_index], y[test_index]
   
    for i in param_logreg:
        training_acc,test_acc=log_reg(X_train,X_test,y_train,y_test,i)
        training_acc_col[-1].append(training_acc)
        test_acc_col[-1].append(test_acc)

Logistic Regression

Plot averaged training accuracy & test accuracy over the range of regularization terms after running through 5 folds

x_i=[i for i in range(len(param_logreg))]

plt.figure(figsize=(10,10))
plt.plot(x_i,avg_training_acc,marker='o',mfc='blue',color='r')
plt.plot(x_i,avg_test_acc,marker='X',mfc='red',color='black')
plt.xticks(x_i,param_logreg)
plt.legend(['Training Accuracy','Test Accuracy'])
plt.xlabel('The Value of Regularization Terms',size=20)
plt.ylabel('Accuracy Rate',size=20)
plt.show()

 

avg_training_acc=np.mean(np.array(training_acc_col),axis=0)
avg_test_acc=np.mean(np.array(test_acc_col),axis=0)

Logistic Regression

Logistic Regression

Step 2: Find the exact value of the best regularization term (we choose from 1000 to 10000)

param_logreg=[]
training_acc_col=[]
test_acc_col=[]
for i in range(1000,10000,500):
    param_logreg.append(i)
for train_index, test_index in kf.split(X):
    training_acc_col.append([])
    test_acc_col.append([])
    X_train, X_test = X[train_index], X[test_index]
    y_train, y_test = y[train_index], y[test_index]   
    for i in param_logreg:
        training_acc,test_acc=log_reg(X_train,X_test,y_train,y_test,i)
        training_acc_col[-1].append(training_acc)
        test_acc_col[-1].append(test_acc)

Logistic Regression

Plotting the averaged accuracy

avg_training_acc=np.mean(np.array(training_acc_col),axis=0)
avg_test_acc=np.mean(np.array(test_acc_col),axis=0)

x_i=[i for i in range(len(param_logreg))]
plt.figure(figsize=(10,10))

plt.plot(x_i,avg_training_acc,marker='o',mfc='blue',color='r')
plt.plot(x_i,avg_test_acc,marker='X',mfc='red',color='black')
plt.xticks(x_i,param_logreg)
plt.xlabel('The Value of Regularization Terms',size=20)
plt.ylabel('Accuracy Rate',size=20)
plt.legend(['Training Accuracy','Test Accuracy'])
# plt.xlim(min(param_logreg)/10,max(param_logreg))
plt.show()

Logistic Regression

Logistic Regression

Regularization term: log_reg_term=2500

Averaged training accuracy: 83.78%

Averaged test accuracy: 80.51%

Support Vector Machine

  • A discriminative classifier formally defined by a separating hyperplane
  • The algorithm outputs an optimal hyperplane which categorizes new examples (a line in 2-D dimension)

Support Vector Machine

Support Vector Machine

Cost Function

Objective Function

If C=(1/lambda), SVM with linear kernel and Logistic Regression using regularization give exactly the same hypothesized parameters

C too large: over-fitting

C too small: under-fitting

Instead of A + λB, we use CA + B

Support Vector Machine

kf = KFold(n_splits=5)

Applying Support Vector Machine with Linear Kernel

Number of folds (iterations): k=5

List of regularization terms:

=> Define the best regularization term

Support Vector Machine

Define the best range of regularization terms

training_acc_col=[]
test_acc_col=[]

for train_index, test_index in kf.split(X):
    training_acc_col.append([])
    test_acc_col.append([])
    X_train, X_test = X[train_index], X[test_index]
    y_train, y_test = y[train_index], y[test_index]   


    for i in param_linear_svc:
        training_acc,test_acc=linear_svc(X_train,X_test,y_train,y_test,i)
        training_acc_col[-1].append(training_acc)
        test_acc_col[-1].append(test_acc)

Support Vector Machine

Plotting the averaged training and test error after running through 5 folds

avg_training_acc=np.mean(np.array(training_acc_col),axis=0)
avg_test_acc=np.mean(np.array(test_acc_col),axis=0)

x_i=[i for i in range(len(param_linear_svc))]
plt.figure(figsize=(10,10))
ax = plt.subplot(111)
plt.plot(x_i,avg_training_acc,marker='o',mfc='blue',color='r')
plt.plot(x_i,avg_test_acc,marker='X',mfc='red',color='black')
xlabel=['10^'+str(i) for i in range(3,13)]
plt.xticks(x_i,xlabel)
plt.xlabel('The Value of Regularization Terms',size=20)
plt.ylabel('Accuracy Rate',size=20)
plt.show()

Support Vector Machine

Support Vector Machine

Find the exact value of the best regularization term (we choose from C = 10^7 to 10^8)

training_acc_col=[]
test_acc_col=[]
param_linear_svc=[i for i in range(10**7,10**8+1,int((10**7)))]
print('Regularization terms:',param_linear_svc)
for train_index, test_index in kf.split(X):
    training_acc_col.append([])
    test_acc_col.append([])
    X_train, X_test = X[train_index], X[test_index]
    y_train, y_test = y[train_index], y[test_index]   
    for i in param_linear_svc:
        training_acc,test_acc=linear_svc(X_train,X_test,y_train,y_test,i)
        training_acc_col[-1].append(training_acc)
        test_acc_col[-1].append(test_acc)

Support Vector Machine

Plotting the averaged training and test error after running through 5 folds

Support Vector Machine

Regularization linear_svc_reg=3*10**7

Averaged training accuracy: 86.98%

Averaged test accuracy: 80.69%

Support Vector Machine

with Gaussian Kernel

Gaussian kernel a function whose value depends on the distance from the origin or from some point.

Support Vector Machine with Gaussian Kernel

Support Vector Machine with Gaussian Kernel

Defines how far the influence of a single training example reaches, with low values meaning ‘far’ and high values meaning ‘close’

 E.g. Small sigma: small variance, 2 points must be so close to be defined as similar

Support Vector Machine with Gaussian Kernel

Support Vector Machine with Gaussian Kernel

Applying Support Vector Machine with Gaussian Kernel

Number of folds (iterations): k=5

kf = KFold(n_splits=5)

List of regularization terms:

Regularization terms: Regs= [1, 10, 100, 1000] 
Gammas= [10000, 100000, 1000000, 10000000, 100000000, 1000000000]

=> Define the best regularization term

Support Vector Machine with Gaussian Kernel

training_acc_col=[]
test_acc_col=[]

for train_index, test_index in kf.split(X):
    print('FOLD:',k)
    X_train, X_test = X[train_index], X[test_index]
    y_train, y_test = y[train_index], y[test_index]   
    for i in reg_gaussian_svc:
        training_acc_col.append([])
        test_acc_col.append([])
        for j in gamma_gaussian_svc:
            print(j)                       

            training_acc,test_acc=

            gaussian_svc(X_train,X_test,y_train,y_test,i,j)
            training_acc_col[-1].append(training_acc)
            test_acc_col[-1].append(test_acc)

Support Vector Machine with Gaussian Kernel

avg_training_acc=np.mean(np.array(training_acc_col).reshape((5,-1)),axis=0).reshape(4,6)
avg_test_acc=np.mean(np.array(test_acc_col).reshape((5,-1)),axis=0).reshape(4,6)

Plotting the averaged training and test error after running through 5 folds

reg_gaussian_svc_i,gamma_gaussian_svc_i=np.meshgrid(np.array(reg_gaussian_svc),np.array(gamma_gaussian_svc),indexing='ij')

x_i=[i for i in range(len(reg_gaussian_svc))]
y_i=[i for i in range(len(gamma_gaussian_svc))]
x_ii,y_ii=np.meshgrid(x_i,y_i,indexing='ij')

plt.figure(figsize=(10,10))

plt.contourf(x_ii,y_ii,avg_training_acc)
plt.colorbar()
plt.xticks(x_i,reg_gaussian_svc)
plt.yticks(y_i,gamma_gaussian_svc)
plt.show()
plt.figure(figsize=(10,10))

plt.contourf(x_ii,y_ii,avg_test_acc)

plt.colorbar()
plt.xticks(x_i,reg_gaussian_svc)
plt.yticks(y_i,gamma_gaussian_svc)
plt.show()

Support Vector Machine with Gaussian Kernel

Support Vector Machine with Gaussian Kernel

best_reg=0
best_gamma=0

training_acc_col=[]
test_acc_col=[]

for train_index, test_index in kf.split(X):   
    X_train, X_test = X[train_index], X[test_index]
    y_train, y_test = y[train_index], y[test_index]   
    for i in reg_gaussian_svc:       
        for j in gamma_gaussian_svc:                     

              training_acc,test_acc=

              gaussian_svc(X_train,X_test,y_train,y_test,i,j)

              test_acc_col.append(test_acc)

avg_test_acc=np.mean(np.array(test_acc_col).reshape((5,-1)),axis=0).reshape(4,6)
best_test_accuracy=np.max(avg_test_acc)
i,j=int(np.where(avg_test_acc==np.max(avg_test_acc))[0]),int(np.where(avg_test_acc==np.max(avg_test_acc))[1])
best_reg=reg_gaussian_svc[i]
best_gamma=gamma_gaussian_svc[j]

Support Vector Machine with Gaussian Kernel

Support Vector Machine with Gaussian Kernel

Regularization terms: Regs= [1, 10, 100, 1000]  
Gammas= [10000, 100000, 1000000, 10000000, 100000000, 1000000000]

Best test accuracy: 0.8014716073539603 
Best regularization term: 1 
Best gamma: 100000000

K nearest neighbors

(KNN)

the input consists of the k closest training examples in the feature space.

 

(modified pipeline)

PCA should only be applied on the training set

best parameters only for that test fold!!!

Model Performance

Model Performance

PCA applied to generated folds

PCA + Nested cross-validation

???

[1108x155x165x195x1]

1108

1

[256x256x256]

[155x165x195]

Original

Cropped 

Input Tensor

Layer (type)                 Output Shape              Param #   
=================================================================
conv1 (Conv3D)               (None, 155, 165, 195, 8)  1728008   
_________________________________________________________________
max_pooling3d (MaxPooling3D) (None, 51, 55, 65, 8)     0         
_________________________________________________________________
conv2 (Conv3D)               (None, 51, 55, 65, 16)    2000016   
_________________________________________________________________
max_pooling3d_1 (MaxPooling3 (None, 25, 27, 32, 16)    0         
_________________________________________________________________
conv3 (Conv3D)               (None, 25, 27, 32, 32)    1728032   
_________________________________________________________________
max_pooling3d_2 (MaxPooling3 (None, 12, 13, 16, 32)    0         
_________________________________________________________________
conv3d (Conv3D)              (None, 12, 13, 16, 64)    2048064   
_________________________________________________________________
max_pooling3d_3 (MaxPooling3 (None, 6, 6, 8, 64)       0         
_________________________________________________________________
conv3d_1 (Conv3D)            (None, 6, 6, 8, 128)      1024128   
_________________________________________________________________
max_pooling3d_4 (MaxPooling3 (None, 3, 3, 4, 128)      0         
_________________________________________________________________
flatten (Flatten)            (None, 4608)              0         
_________________________________________________________________
dense (Dense)                (None, 2048)              9439232   
_________________________________________________________________
dense_1 (Dense)              (None, 512)               1049088   
_________________________________________________________________
predictions (Dense)          (None, 1)                 513       
=================================================================
Total params: 19,017,081
Trainable params: 19,017,081
Non-trainable params: 0

 

[1108] [X^3]

 

1108

1

[256x256x256]

[200^3]

Original

Cropped 

Input Tensor

[150^3, 100^3, 50^3]

Resized

Conclusions

  • It is possible to reduce the dimension using simple operations like: cropping and  resizing , however, this also means we lose information.
  • Aspect ratio in not conserved during resize step (warping)
  • PCA help us reduce the amount of features by finding a subspace in which classes can be seperated normally using the principal components as new axes for our data.
  • PCA can be used for different purposes depending the application.
  • The computation of PCA is fairly expensive and can be speeded up by using SVD algorithm.
  • Vizualization of volumes is expensive...(GPU based solutions)
  • Feature selection should be applied ONLY to the train data BEFORE cross validation step.
  • Nested cross validation is needed in order to eliminate the bias coming from parameter search (learning only for a piece of data).
  • PCA should be applied with care due to introdution of bias if done wrong  (leak of knowledge)
  • Nestes cross validation is computational expensive due to inner and outer loops (parameter search + cross val) 
  • Work with cropped 3D volumes in future developments 5million voxels instead of 17million (convolutional neural networks starting point)

official presentation file

By gabriel munoz

official presentation file

  • 246