rbokeh
A Simple, Flexible, Declarative Framework for Interactive Graphics
Follow along live: http://bit.ly/rbokeh1v
View at your own pace: http://bit.ly/rbokeh1
What is rbokeh?
- An R interface to the Bokeh library
- Bokeh:
- Open source interactive visualization library
- Created by Continuum Analytics
- http://bokeh.pydata.org/
- rbokeh goals:
- General purpose web-based visualization system for ad-hoc statistical graphics
- R-like interface
- Simple transient interactivity for free or with very little effort (zoom / pan / tooltips / etc.)
- Put more complex interactivity within reach
bokeh
Interface
Python
rbokeh
R
Bokeh.jl
Julia
bokeh-scala
Scala
JSON spec
{
"x": {
"elementid": "8b6c0abd6e5affc74709b702ba9f63dd",
"modeltype": "Plot",
"modelid": "2bd6591010f5f4263e7539d8abd41161",
"docid": "49d325c6b0dbafed8d9edba171e29f84",
"docs_json": {
"49d325c6b0dbafed8d9edba171e29f84": {
"version": "0.11.1",
"title": "Bokeh Figure",
"roots": {
"root_ids": [
"2bd6591010f5f4263e7539d8abd41161"
],
"references": [
{
"type": "Plot",
"id": "2bd6591010f5f4263e7539d8abd41161",
"attributes": {
"title": null,
"id": "2bd6591010f5f4263e7539d8abd41161",
"plot_width": 590,
"plot_height": 354,
"x_range": {
"type": "Range1d",
"id": "855b06b5143027e4d28fbd56f354cd1a"
},
"y_range": {
"type": "Range1d",
"id": "38a564fc3ae79fcae972c4aedce6cc73"
},
"left": [
{
"type": "LinearAxis",
"id": "e96acc27b60637e37f71f0992e6a1759"
}
],
"below": [
{
"type": "LinearAxis",
"id": "c777f597c0492c638fc6ca3c9aa79eb7"
}
],
"right": [],
"above": [],
"renderers": [
{
"type": "BoxAnnotation",
"id": "fc45456a9b894e1e3ecc3d34eb4b6d70"
},
{
"type": "GlyphRenderer",
"id": "65f9ebc1196641edb5ef536629f7446a"
},
{
"type": "GlyphRenderer",
"id": "c219999a52cbabb369b59cf49ad418b4"
},
{
"type": "LinearAxis",
"id": "c777f597c0492c638fc6ca3c9aa79eb7"
},
{
"type": "Grid",
"id": "37bd3b4c846f3688f2b5ff6f22ba2a29"
},
{
"type": "LinearAxis",
"id": "e96acc27b60637e37f71f0992e6a1759"
},
{
"type": "Grid",
"id": "ccbad37d6b0181b634abd78597617c0c"
}
],
"tools": [
{
"type": "PanTool",
"id": "07ee5fa3fd44713bd31dc48131f6204e"
},
{
"type": "WheelZoomTool",
"id": "8801a673fe17e4a711b6276141762985"
},
{
"type": "BoxZoomTool",
"id": "1ab4e4fab27dc5b57f8f4b4e1526fb4f"
},
{
"type": "ResizeTool",
"id": "cafcf2b39570844605261c20579a3a0c"
},
{
"type": "ResetTool",
"id": "2b07b240860bb98dcac9fdccfd6821c7"
},
{
"type": "PreviewSaveTool",
"id": "02391b5dc908cd7a12a1b92c1c9053ac"
},
{
"type": "HelpTool",
"id": "9380370627015195ffa419cec085a730"
}
],
"tool_events": {
"type": "ToolEvents",
"id": "88bac4bbcf4de01cb305797122a931ea"
},
"extra_y_ranges": {},
"extra_x_ranges": {},
"tags": [],
"doc": null,
"min_border_left": 4,
"min_border_right": 4,
"min_border_top": 4,
"min_border_bottom": 4,
"lod_threshold": null
},
"subtype": "Figure"
},
{
"type": "PanTool",
"id": "07ee5fa3fd44713bd31dc48131f6204e",
"attributes": {
"id": "07ee5fa3fd44713bd31dc48131f6204e",
"tags": [],
"doc": null,
"plot": {
"type": "Plot",
"id": "2bd6591010f5f4263e7539d8abd41161",
"subtype": "Figure"
},
"dimensions": [
"width",
"height"
]
}
},
{
"type": "ToolEvents",
"id": "88bac4bbcf4de01cb305797122a931ea",
"attributes": {
"id": "88bac4bbcf4de01cb305797122a931ea",
"tags": [],
"doc": null
},
"geometries": []
},
{
"type": "WheelZoomTool",
"id": "8801a673fe17e4a711b6276141762985",
"attributes": {
"id": "8801a673fe17e4a711b6276141762985",
"tags": [],
"doc": null,
"plot": {
"type": "Plot",
"id": "2bd6591010f5f4263e7539d8abd41161",
"subtype": "Figure"
},
"dimensions": [
"width",
"height"
]
}
},
{
"type": "BoxAnnotation",
"id": "fc45456a9b894e1e3ecc3d34eb4b6d70",
"attributes": {
"id": "fc45456a9b894e1e3ecc3d34eb4b6d70",
"tags": [],
"doc": null,
"line_color": {
"units": "data",
"value": "black"
},
"line_alpha": {
"units": "data",
"value": 1
},
"fill_color": {
"units": "data",
"value": "lightgrey"
},
"fill_alpha": {
"units": "data",
"value": 0.5
},
"line_dash": [
4,
4
],
"line_width": {
"units": "data",
"value": 2
},
"level": "overlay",
"top_units": "screen",
"bottom_units": "screen",
"left_units": "screen",
"right_units": "screen",
"render_mode": "css"
}
},
{
"type": "BoxZoomTool",
"id": "1ab4e4fab27dc5b57f8f4b4e1526fb4f",
"attributes": {
"id": "1ab4e4fab27dc5b57f8f4b4e1526fb4f",
"tags": [],
"doc": null,
"plot": {
"type": "Plot",
"id": "2bd6591010f5f4263e7539d8abd41161",
"subtype": "Figure"
},
"overlay": {
"type": "BoxAnnotation",
"id": "fc45456a9b894e1e3ecc3d34eb4b6d70"
}
}
},
{
"type": "ResizeTool",
"id": "cafcf2b39570844605261c20579a3a0c",
"attributes": {
"id": "cafcf2b39570844605261c20579a3a0c",
"tags": [],
"doc": null,
"plot": {
"type": "Plot",
"id": "2bd6591010f5f4263e7539d8abd41161",
"subtype": "Figure"
}
}
},
{
"type": "ResetTool",
"id": "2b07b240860bb98dcac9fdccfd6821c7",
"attributes": {
"id": "2b07b240860bb98dcac9fdccfd6821c7",
"tags": [],
"doc": null,
"plot": {
"type": "Plot",
"id": "2bd6591010f5f4263e7539d8abd41161",
"subtype": "Figure"
}
}
},
{
"type": "PreviewSaveTool",
"id": "02391b5dc908cd7a12a1b92c1c9053ac",
"attributes": {
"id": "02391b5dc908cd7a12a1b92c1c9053ac",
"tags": [],
"doc": null,
"plot": {
"type": "Plot",
"id": "2bd6591010f5f4263e7539d8abd41161",
"subtype": "Figure"
}
}
},
{
"type": "HelpTool",
"id": "9380370627015195ffa419cec085a730",
"attributes": {
"id": "9380370627015195ffa419cec085a730",
"tags": [],
"doc": null,
"plot": {
"type": "Plot",
"id": "2bd6591010f5f4263e7539d8abd41161",
"subtype": "Figure"
},
"redirect": [
"http://hafen.github.io/rbokeh"
],
"help_tooltip": [
"Click to learn more about rbokeh."
]
}
},
{
"type": "ColumnDataSource",
"id": "dee55ef8ac74b72da4272b76619d8f0d",
"attributes": {
"id": "dee55ef8ac74b72da4272b76619d8f0d",
"tags": [],
"doc": null,
"column_names": [
"left",
"right",
"top",
"bottom"
],
"selected": [],
"discrete_ranges": {},
"cont_ranges": {},
"data": {
"left": [
1.6,
1.7,
1.8,
1.9,
2,
2.1,
2.2,
2.3,
2.4,
2.5,
2.6,
2.7,
2.8,
2.9,
3,
3.1,
3.2,
3.3,
3.4,
3.5,
3.6,
3.7,
3.8,
3.9,
4,
4.1,
4.2,
4.3,
4.4,
4.5,
4.6,
4.7,
4.8,
4.9,
5
],
"right": [
1.7,
1.8,
1.9,
2,
2.1,
2.2,
2.3,
2.4,
2.5,
2.6,
2.7,
2.8,
2.9,
3,
3.1,
3.2,
3.3,
3.4,
3.5,
3.6,
3.7,
3.8,
3.9,
4,
4.1,
4.2,
4.3,
4.4,
4.5,
4.6,
4.7,
4.8,
4.9,
5,
5.1
],
"top": [
0.110294117647059,
0.477941176470589,
0.88235294117647,
0.551470588235295,
0.404411764705882,
0.294117647058823,
0.294117647058823,
0.25735294117647,
0.110294117647059,
0,
0.0735294117647061,
0.0367647058823529,
0.0735294117647058,
0,
0.0367647058823529,
0,
0,
0.147058823529412,
0.147058823529412,
0.220588235294117,
0.0367647058823529,
0.183823529411765,
0.330882352941178,
0.47794117647059,
0.441176470588233,
0.514705882352938,
0.47794117647059,
0.588235294117649,
0.735294117647061,
0.661764705882349,
0.477941176470586,
0.404411764705884,
0.294117647058825,
0.147058823529411,
0.110294117647059
],
"bottom": [
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0
]
}
}
},
{
"type": "Quad",
"id": "723ead80aef18191e6582f5beadbfbb3",
"attributes": {
"id": "723ead80aef18191e6582f5beadbfbb3",
"tags": [],
"doc": null,
"visible": true,
"line_color": {
"units": "data",
"value": "#1F77B4"
},
"fill_color": {
"units": "data",
"value": "#1F77B4"
},
"line_alpha": {
"units": "data",
"value": 1
},
"fill_alpha": {
"units": "data",
"value": 0.5
},
"left": {
"units": "data",
"field": "left"
},
"right": {
"units": "data",
"field": "right"
},
"top": {
"units": "data",
"field": "top"
},
"bottom": {
"units": "data",
"field": "bottom"
}
}
},
{
"type": "Quad",
"id": "4bbbcf442697a53109d3b2f53c963ed4",
"attributes": {
"id": "4bbbcf442697a53109d3b2f53c963ed4",
"tags": [],
"doc": null,
"visible": true,
"line_color": {
"units": "data",
"value": "#e1e1e1"
},
"fill_color": {
"units": "data",
"value": "#e1e1e1"
},
"line_alpha": {
"units": "data",
"value": 1
},
"fill_alpha": {
"units": "data",
"value": 0.5
},
"left": {
"units": "data",
"field": "left"
},
"right": {
"units": "data",
"field": "right"
},
"top": {
"units": "data",
"field": "top"
},
"bottom": {
"units": "data",
"field": "bottom"
}
}
},
{
"type": "Quad",
"id": "014444b3b50e318c84e81d75da457c2f",
"attributes": {
"id": "014444b3b50e318c84e81d75da457c2f",
"tags": [],
"doc": null,
"visible": true,
"line_color": {
"units": "data",
"value": "#1F77B4"
},
"fill_color": {
"units": "data",
"value": "#1F77B4"
},
"line_alpha": {
"units": "data",
"value": 1
},
"fill_alpha": {
"units": "data",
"value": 1
},
"left": {
"units": "data",
"field": "left"
},
"right": {
"units": "data",
"field": "right"
},
"top": {
"units": "data",
"field": "top"
},
"bottom": {
"units": "data",
"field": "bottom"
}
}
},
{
"type": "GlyphRenderer",
"id": "65f9ebc1196641edb5ef536629f7446a",
"attributes": {
"id": "65f9ebc1196641edb5ef536629f7446a",
"tags": [],
"doc": null,
"selection_glyph": null,
"nonselection_glyph": {
"type": "Quad",
"id": "4bbbcf442697a53109d3b2f53c963ed4"
},
"hover_glyph": {
"type": "Quad",
"id": "014444b3b50e318c84e81d75da457c2f"
},
"server_data_source": null,
"name": null,
"data_source": {
"type": "ColumnDataSource",
"id": "dee55ef8ac74b72da4272b76619d8f0d"
},
"glyph": {
"type": "Quad",
"id": "723ead80aef18191e6582f5beadbfbb3"
}
}
},
{
"type": "ColumnDataSource",
"id": "b5c25518231f9d947ed8ea93bdc807a9",
"attributes": {
"id": "b5c25518231f9d947ed8ea93bdc807a9",
"tags": [],
"doc": null,
"column_names": [
"x",
"y"
],
"selected": [],
"discrete_ranges": {},
"cont_ranges": {},
"data": {
"x": [
0.59566889660817,
0.606449057482502,
0.617229218356834,
0.628009379231166,
0.638789540105498,
0.64956970097983,
0.660349861854162,
0.671130022728494,
0.681910183602826,
0.692690344477158,
0.70347050535149,
0.714250666225822,
0.725030827100154,
0.735810987974486,
0.746591148848818,
0.75737130972315,
0.768151470597482,
0.778931631471814,
0.789711792346147,
0.800491953220479,
0.81127211409481,
0.822052274969143,
0.832832435843475,
0.843612596717807,
0.854392757592139,
0.865172918466471,
0.875953079340803,
0.886733240215135,
0.897513401089467,
0.908293561963799,
0.919073722838131,
0.929853883712463,
0.940634044586795,
0.951414205461127,
0.962194366335459,
0.972974527209791,
0.983754688084123,
0.994534848958455,
1.00531500983279,
1.01609517070712,
1.02687533158145,
1.03765549245578,
1.04843565333011,
1.05921581420445,
1.06999597507878,
1.08077613595311,
1.09155629682744,
1.10233645770177,
1.11311661857611,
1.12389677945044,
1.13467694032477,
1.1454571011991,
1.15623726207343,
1.16701742294777,
1.1777975838221,
1.18857774469643,
1.19935790557076,
1.2101380664451,
1.22091822731943,
1.23169838819376,
1.24247854906809,
1.25325870994242,
1.26403887081676,
1.27481903169109,
1.28559919256542,
1.29637935343975,
1.30715951431408,
1.31793967518842,
1.32871983606275,
1.33949999693708,
1.35028015781141,
1.36106031868574,
1.37184047956008,
1.38262064043441,
1.39340080130874,
1.40418096218307,
1.4149611230574,
1.42574128393174,
1.43652144480607,
1.4473016056804,
1.45808176655473,
1.46886192742906,
1.4796420883034,
1.49042224917773,
1.50120241005206,
1.51198257092639,
1.52276273180072,
1.53354289267506,
1.54432305354939,
1.55510321442372,
1.56588337529805,
1.57666353617238,
1.58744369704672,
1.59822385792105,
1.60900401879538,
1.61978417966971,
1.63056434054404,
1.64134450141838,
1.65212466229271,
1.66290482316704,
1.67368498404137,
1.6844651449157,
1.69524530579004,
1.70602546666437,
1.7168056275387,
1.72758578841303,
1.73836594928736,
1.7491461101617,
1.75992627103603,
1.77070643191036,
1.78148659278469,
1.79226675365902,
1.80304691453336,
1.81382707540769,
1.82460723628202,
1.83538739715635,
1.84616755803068,
1.85694771890502,
1.86772787977935,
1.87850804065368,
1.88928820152801,
1.90006836240234,
1.91084852327668,
1.92162868415101,
1.93240884502534,
1.94318900589967,
1.953969166774,
1.96474932764834,
1.97552948852267,
1.986309649397,
1.99708981027133,
2.00786997114566,
2.01865013202,
2.02943029289433,
2.04021045376866,
2.05099061464299,
2.06177077551732,
2.07255093639166,
2.08333109726599,
2.09411125814032,
2.10489141901465,
2.11567157988898,
2.12645174076332,
2.13723190163765,
2.14801206251198,
2.15879222338631,
2.16957238426064,
2.18035254513498,
2.19113270600931,
2.20191286688364,
2.21269302775797,
2.2234731886323,
2.23425334950664,
2.24503351038097,
2.2558136712553,
2.26659383212963,
2.27737399300396,
2.2881541538783,
2.29893431475263,
2.30971447562696,
2.32049463650129,
2.33127479737562,
2.34205495824996,
2.35283511912429,
2.36361527999862,
2.37439544087295,
2.38517560174728,
2.39595576262162,
2.40673592349595,
2.41751608437028,
2.42829624524461,
2.43907640611894,
2.44985656699328,
2.46063672786761,
2.47141688874194,
2.48219704961627,
2.49297721049061,
2.50375737136494,
2.51453753223927,
2.5253176931136,
2.53609785398793,
2.54687801486226,
2.5576581757366,
2.56843833661093,
2.57921849748526,
2.58999865835959,
2.60077881923393,
2.61155898010826,
2.62233914098259,
2.63311930185692,
2.64389946273125,
2.65467962360559,
2.66545978447992,
2.67623994535425,
2.68702010622858,
2.69780026710291,
2.70858042797725,
2.71936058885158,
2.73014074972591,
2.74092091060024,
2.75170107147457,
2.76248123234891,
2.77326139322324,
2.78404155409757,
2.7948217149719,
2.80560187584623,
2.81638203672057,
2.8271621975949,
2.83794235846923,
2.84872251934356,
2.85950268021789,
2.87028284109223,
2.88106300196656,
2.89184316284089,
2.90262332371522,
2.91340348458955,
2.92418364546389,
2.93496380633822,
2.94574396721255,
2.95652412808688,
2.96730428896121,
2.97808444983555,
2.98886461070988,
2.99964477158421,
3.01042493245854,
3.02120509333287,
3.03198525420721,
3.04276541508154,
3.05354557595587,
3.0643257368302,
3.07510589770453,
3.08588605857887,
3.0966662194532,
3.10744638032753,
3.11822654120186,
3.12900670207619,
3.13978686295053,
3.15056702382486,
3.16134718469919,
3.17212734557352,
3.18290750644785,
3.19368766732219,
3.20446782819652,
3.21524798907085,
3.22602814994518,
3.23680831081951,
3.24758847169385,
3.25836863256818,
3.26914879344251,
3.27992895431684,
3.29070911519117,
3.30148927606551,
3.31226943693984,
3.32304959781417,
3.3338297586885,
3.34460991956283,
3.35539008043717,
3.3661702413115,
3.37695040218583,
3.38773056306016,
3.39851072393449,
3.40929088480883,
3.42007104568316,
3.43085120655749,
3.44163136743182,
3.45241152830615,
3.46319168918049,
3.47397185005482,
3.48475201092915,
3.49553217180348,
3.50631233267781,
3.51709249355215,
3.52787265442648,
3.53865281530081,
3.54943297617514,
3.56021313704947,
3.57099329792381,
3.58177345879814,
3.59255361967247,
3.6033337805468,
3.61411394142113,
3.62489410229547,
3.6356742631698,
3.64645442404413,
3.65723458491846,
3.66801474579279,
3.67879490666713,
3.68957506754146,
3.70035522841579,
3.71113538929012,
3.72191555016445,
3.73269571103879,
3.74347587191312,
3.75425603278745,
3.76503619366178,
3.77581635453611,
3.78659651541045,
3.79737667628478,
3.80815683715911,
3.81893699803344,
3.82971715890777,
3.84049731978211,
3.85127748065644,
3.86205764153077,
3.8728378024051,
3.88361796327943,
3.89439812415377,
3.9051782850281,
3.91595844590243,
3.92673860677676,
3.93751876765109,
3.94829892852543,
3.95907908939976,
3.96985925027409,
3.98063941114842,
3.99141957202275,
4.00219973289709,
4.01297989377142,
4.02376005464575,
4.03454021552008,
4.04532037639441,
4.05610053726875,
4.06688069814308,
4.07766085901741,
4.08844101989174,
4.09922118076608,
4.11000134164041,
4.12078150251474,
4.13156166338907,
4.1423418242634,
4.15312198513774,
4.16390214601207,
4.1746823068864,
4.18546246776073,
4.19624262863506,
4.2070227895094,
4.21780295038373,
4.22858311125806,
4.23936327213239,
4.25014343300672,
4.26092359388106,
4.27170375475539,
4.28248391562972,
4.29326407650405,
4.30404423737838,
4.31482439825272,
4.32560455912705,
4.33638472000138,
4.34716488087571,
4.35794504175004,
4.36872520262438,
4.37950536349871,
4.39028552437304,
4.40106568524737,
4.4118458461217,
4.42262600699604,
4.43340616787037,
4.4441863287447,
4.45496648961903,
4.46574665049336,
4.4765268113677,
4.48730697224203,
4.49808713311636,
4.50886729399069,
4.51964745486502,
4.53042761573936,
4.54120777661369,
4.55198793748802,
4.56276809836235,
4.57354825923668,
4.58432842011102,
4.59510858098535,
4.60588874185968,
4.61666890273401,
4.62744906360834,
4.63822922448268,
4.64900938535701,
4.65978954623134,
4.67056970710567,
4.68134986798,
4.69213002885434,
4.70291018972867,
4.713690350603,
4.72447051147733,
4.73525067235166,
4.746030833226,
4.75681099410033,
4.76759115497466,
4.77837131584899,
4.78915147672332,
4.79993163759766,
4.81071179847199,
4.82149195934632,
4.83227212022065,
4.84305228109498,
4.85383244196932,
4.86461260284365,
4.87539276371798,
4.88617292459231,
4.89695308546664,
4.90773324634098,
4.91851340721531,
4.92929356808964,
4.94007372896397,
4.9508538898383,
4.96163405071264,
4.97241421158697,
4.9831943724613,
4.99397453333563,
5.00475469420996,
5.0155348550843,
5.02631501595863,
5.03709517683296,
5.04787533770729,
5.05865549858162,
5.06943565945596,
5.08021582033029,
5.09099598120462,
5.10177614207895,
5.11255630295329,
5.12333646382762,
5.13411662470195,
5.14489678557628,
5.15567694645061,
5.16645710732494,
5.17723726819928,
5.18801742907361,
5.19879758994794,
5.20957775082227,
5.2203579116966,
5.23113807257094,
5.24191823344527,
5.2526983943196,
5.26347855519393,
5.27425871606827,
5.2850388769426,
5.29581903781693,
5.30659919869126,
5.31737935956559,
5.32815952043993,
5.33893968131426,
5.34971984218859,
5.36050000306292,
5.37128016393725,
5.38206032481158,
5.39284048568592,
5.40362064656025,
5.41440080743458,
5.42518096830891,
5.43596112918324,
5.44674129005758,
5.45752145093191,
5.46830161180624,
5.47908177268057,
5.48986193355491,
5.50064209442924,
5.51142225530357,
5.5222024161779,
5.53298257705223,
5.54376273792657,
5.5545428988009,
5.56532305967523,
5.57610322054956,
5.58688338142389,
5.59766354229822,
5.60844370317256,
5.61922386404689,
5.63000402492122,
5.64078418579555,
5.65156434666989,
5.66234450754422,
5.67312466841855,
5.68390482929288,
5.69468499016721,
5.70546515104155,
5.71624531191588,
5.72702547279021,
5.73780563366454,
5.74858579453887,
5.75936595541321,
5.77014611628754,
5.78092627716187,
5.7917064380362,
5.80248659891053,
5.81326675978486,
5.8240469206592,
5.83482708153353,
5.84560724240786,
5.85638740328219,
5.86716756415653,
5.87794772503086,
5.88872788590519,
5.89950804677952,
5.91028820765385,
5.92106836852819,
5.93184852940252,
5.94262869027685,
5.95340885115118,
5.96418901202551,
5.97496917289985,
5.98574933377418,
5.99652949464851,
6.00730965552284,
6.01808981639717,
6.02886997727151,
6.03965013814584,
6.05043029902017,
6.0612104598945,
6.07199062076883,
6.08277078164317,
6.0935509425175,
6.10433110339183
],
"y": [
0.000340678331234312,
0.000380723352868235,
0.000424638834177929,
0.000474963337995418,
0.000529393975264593,
0.000588682319173735,
0.000656607293234329,
0.000729914014239381,
0.000809244200385803,
0.000900087147746019,
0.000997909802788136,
0.00110310930472324,
0.00122348894412429,
0.0013528248887647,
0.00149117288312956,
0.00164913333561658,
0.00181855582093685,
0.00199942167473366,
0.00220422325038804,
0.00242410119936976,
0.00265835041853829,
0.00292148473194166,
0.0032041918662996,
0.00350474681750114,
0.00383976261513001,
0.00419986060043966,
0.00458187414081252,
0.00500452312354923,
0.00545890020097555,
0.00593987935691386,
0.00646820645402869,
0.00703615023179504,
0.00763600794271693,
0.00829036489293674,
0.00899354594502326,
0.00973455713732782,
0.0105375170822025,
0.011399859147599,
0.012306496938768,
0.0132826478953375,
0.0143300611957354,
0.015428690250963,
0.0166042871506105,
0.0178642440188272,
0.0191826513455792,
0.0205851100894068,
0.0220860470112707,
0.0236527960341476,
0.0253100189022193,
0.0270805563700979,
0.0289241580808079,
0.0308636878728346,
0.0329316690911818,
0.0350795743177512,
0.0373275846362204,
0.0397189458418298,
0.0421963748914568,
0.0447765156276782,
0.0475140140698388,
0.0503426535788096,
0.0532747833236814,
0.0563766230170699,
0.0595732339460874,
0.0628720839025362,
0.0663504931146036,
0.0699254874004964,
0.0735993134307566,
0.0774591403204545,
0.0814151955281433,
0.0854674346119005,
0.0897018877518677,
0.0940326779025911,
0.0984567090511619,
0.103050298851152,
0.107739424237894,
0.112516104249697,
0.117445275006718,
0.122465473244922,
0.127564637117359,
0.132795053419104,
0.138107767545186,
0.143487901703603,
0.14897431649527,
0.154529683381069,
0.160138033677567,
0.165824581961215,
0.171561885942477,
0.177335039492973,
0.183155984529116,
0.189004597786179,
0.194869553181548,
0.20075048825132,
0.206631292496144,
0.212507005224319,
0.218366488015298,
0.224193743243689,
0.229993104211105,
0.235744674532209,
0.241428272114101,
0.247060449133596,
0.25261495593043,
0.258062967378506,
0.263436014639362,
0.268704157143543,
0.27382556867742,
0.278849189624442,
0.283744161698247,
0.288451670060239,
0.2930400065139,
0.297480124233002,
0.3016928624661,
0.305767178399277,
0.309678369510705,
0.313324433284999,
0.316815565938677,
0.320133606271481,
0.323152261812399,
0.32600272554287,
0.328675121307621,
0.331018594264603,
0.333184242696438,
0.335171677831677,
0.336806447081336,
0.338257625182093,
0.339525138018914,
0.340442467331994,
0.34116461483435,
0.341701436516976,
0.341898167801134,
0.341891866613966,
0.341702469436934,
0.34118954484106,
0.340470033316184,
0.339573345092245,
0.338375172553549,
0.336971376510148,
0.335399692949841,
0.333552941276864,
0.331506093732261,
0.329303601618547,
0.326855666993432,
0.324217604358639,
0.321438606502912,
0.318445838101381,
0.315277069557773,
0.311984009576258,
0.308509785821323,
0.304877434727701,
0.301138820012782,
0.297251564958368,
0.293227277052812,
0.28911559268374,
0.284886815004638,
0.280544718930806,
0.276134414843432,
0.271636841040092,
0.267051633713329,
0.262417253653655,
0.257723113680153,
0.252968327712682,
0.248182832836942,
0.243362341757138,
0.238508836040653,
0.233642159913934,
0.228762224593503,
0.223876923465975,
0.218994779854989,
0.21411794609253,
0.209262838284832,
0.204425789438312,
0.19960943303065,
0.194840829453359,
0.19010361107507,
0.18539936650125,
0.180767406209931,
0.176178496283074,
0.171632921487838,
0.167180295484824,
0.162781707450101,
0.158436365402525,
0.154198035182759,
0.150025311448062,
0.14591407847447,
0.141920130051402,
0.138002509045085,
0.134153023628654,
0.130427690186928,
0.126788418754092,
0.123222428371136,
0.119784469129956,
0.116441231647581,
0.113175048636516,
0.110038217991507,
0.107003653866291,
0.104048692161352,
0.10122227341612,
0.0985045554591958,
0.0958679209856205,
0.093357300045835,
0.0909607475238829,
0.0886458564861628,
0.0864531123765562,
0.084378814327179,
0.0823860155498833,
0.0805105065625621,
0.0787569332768955,
0.0770841132246185,
0.0755230399548137,
0.0740866234074945,
0.0727297755426221,
0.071478705023504,
0.0703543724577513,
0.0693081161619322,
0.0683614547227079,
0.0675431034911442,
0.0668011417702671,
0.066152547988262,
0.0656334539396279,
0.065188963361662,
0.0648316963653778,
0.0646048523099572,
0.0644508028297463,
0.0643780049878544,
0.0644363897767649,
0.0645657959809002,
0.0647707124084365,
0.0651074946175648,
0.0655136031738426,
0.0659897432391112,
0.0665984260809715,
0.0672748465408407,
0.0680189650892751,
0.0688906101420548,
0.0698313975430852,
0.0708384220629995,
0.071966842277876,
0.073166540161143,
0.074431144015695,
0.0758113818241256,
0.0772650333809452,
0.0787823885401244,
0.0804099589535677,
0.0821130922358524,
0.0838788482284138,
0.0857497095011427,
0.0876983002654784,
0.0897085413294557,
0.0918190456809289,
0.0940094588566585,
0.0962606395886157,
0.0986074632983235,
0.101036371670585,
0.103525229186553,
0.106105279493335,
0.108769556347217,
0.11149299532978,
0.114303290386701,
0.117199871872692,
0.1201548181664,
0.123192336029612,
0.126318049078034,
0.129501267868083,
0.13276276122817,
0.136114114020282,
0.139521990105868,
0.143003765170357,
0.146576699380426,
0.150204979508677,
0.153902639957811,
0.15769224699182,
0.161535747395019,
0.165443907395878,
0.169444114337411,
0.173496400160204,
0.177608373697832,
0.181811608229338,
0.186064655032629,
0.190372131926921,
0.194768978704414,
0.19921282927215,
0.203705550832135,
0.208284414264633,
0.212906846148407,
0.217572749743168,
0.222319084974573,
0.227105305310671,
0.23193083107415,
0.23682628191123,
0.24175866588389,
0.246725421700358,
0.251750699747207,
0.256808587644405,
0.261895102796974,
0.267027903959813,
0.272187469213651,
0.27736908280974,
0.282584015828395,
0.287818213019056,
0.293067044214483,
0.298335637882357,
0.303614235774592,
0.308899239769869,
0.314190030895089,
0.319479731579189,
0.324766841407028,
0.330045542077999,
0.335310183608926,
0.340562534201602,
0.345792273947459,
0.350993110866089,
0.356171339111647,
0.361312975346485,
0.366409029375443,
0.371471642058075,
0.376484130912831,
0.381432603063862,
0.38633640381407,
0.39117722311039,
0.395933958392898,
0.400634524978336,
0.40526014157602,
0.409780138288345,
0.414232342552188,
0.418598717384747,
0.422836674315555,
0.426995238503957,
0.431058364002156,
0.434969260406168,
0.438789345144572,
0.442505811091312,
0.446045515641875,
0.449483336034726,
0.452810920857362,
0.455936826556339,
0.458950293451821,
0.461848578253926,
0.464520260214079,
0.467069643342759,
0.469496481882398,
0.47168053735697,
0.473729145697963,
0.475646263121773,
0.4773120499645,
0.478826922342624,
0.480202424027657,
0.481320899881959,
0.482273495634173,
0.483080087888215,
0.483626925385245,
0.483993801268248,
0.484209462116469,
0.484165671682405,
0.483929127438391,
0.483537740791608,
0.482890250653729,
0.482038922272403,
0.481030853708671,
0.479773025957166,
0.478302403131169,
0.476674993280821,
0.47480705327058,
0.472719896245061,
0.470477846869994,
0.468007202999863,
0.465313834269649,
0.462469462840344,
0.459410895017872,
0.45612934329644,
0.452702684321975,
0.449078382268699,
0.44523435985679,
0.441253095384574,
0.437092532281297,
0.432719232259093,
0.428218439650614,
0.42355807225512,
0.418695778529832,
0.413717490520693,
0.408600283494433,
0.403295794262001,
0.39788837401148,
0.392363153370638,
0.386669026528481,
0.380886368374604,
0.375007016295244,
0.368980653271839,
0.362881227730492,
0.356705737941052,
0.350408329795132,
0.344054098493176,
0.337643474002693,
0.33113888380213,
0.324594116086427,
0.318009655095828,
0.311364756707159,
0.304694784277581,
0.298001919572985,
0.29128030074784,
0.284550249576482,
0.27781387529085,
0.271078048180862,
0.264351588064801,
0.257634819824177,
0.250945070231213,
0.244283221555707,
0.237646224176579,
0.231059539521656,
0.224519574261575,
0.218018493074123,
0.211587600743681,
0.205222070573174,
0.198908097881719,
0.192680640909631,
0.186536559770952,
0.180455162117395,
0.174473033422044,
0.168591235331646,
0.162781560421723,
0.157080410341183,
0.151495095934086,
0.145989570677362,
0.140598495658956,
0.13533697336245,
0.130161096839824,
0.125102510177794,
0.120185130337469,
0.115357458016619,
0.110647136819692,
0.106087409933429,
0.101619718454274,
0.0972670148656579,
0.0930718986396571,
0.0889695143013111,
0.084977713650355,
0.0811480481511307,
0.0774103171080418,
0.0737771213571916,
0.0703081873070102,
0.066929061617559,
0.0636471733308534,
0.0605293457206646,
0.0574980569041493,
0.0545558370868447,
0.0517753048208542,
0.049077095506481,
0.0464610886085763,
0.0439987902824508,
0.0416156748360275,
0.0393097776644996,
0.0371437219753179,
0.0350552485519824,
0.033038472729304,
0.0311474432092107,
0.0293314323271862,
0.0275812505554105,
0.0259428596407432,
0.0243760978770838,
0.0228691229330706,
0.0214604290524176,
0.02011930057107,
0.0188318981504693,
0.0176299555576051,
0.0164909986242452,
0.0153998224199181,
0.0143821548539776,
0.0134225350079892,
0.0125049769041563,
0.0116499701976908,
0.0108478660983282,
0.0100824186266233,
0.00936963113469434,
0.00870453307067313,
0.0080710651149922,
0.00748145814949833,
0.00693438263917942,
0.00641433264678228,
0.00593042585787483,
0.00548405256195295,
0.00506054612450778,
0.00466650490921853,
0.00430524417261276,
0.00396314474016229,
0.00364480825585645,
0.00335480898271405,
0.00308071167111305,
0.0028255709067922,
0.00259467918764875,
0.00237685818197683,
0.00217399384585604,
0.00199167286913209,
0.00181999288989714,
0.0016599826842526,
0.0015172040702054,
0.00138300585565828,
0.00125781012308313,
0.00114692602639176,
0.00104289490447826,
0.000945728744340751,
0.000860332995817456,
0.000780358487005019,
0.000705772389611047,
0.000640342666691232,
0.000579375782240197,
0.000522632687891267,
0.000472877334578279,
0.000426790910006688,
0.000383984237596017,
0.000346458197772683,
0.000311914308475438,
0.000279893176692953,
0.000251823431372837,
0.000226150738528505
]
}
}
},
{
"type": "Line",
"id": "d2344d765d2d26d53561972e87f1dd51",
"attributes": {
"id": "d2344d765d2d26d53561972e87f1dd51",
"tags": [],
"doc": null,
"visible": true,
"line_color": {
"units": "data",
"value": "black"
},
"line_alpha": {
"units": "data",
"value": 1
},
"line_width": {
"units": "data",
"value": 1
},
"x": {
"units": "data",
"field": "x"
},
"y": {
"units": "data",
"field": "y"
}
}
},
{
"type": "Line",
"id": "8994fe0d2b96ae26da582d65ee071b96",
"attributes": {
"id": "8994fe0d2b96ae26da582d65ee071b96",
"tags": [],
"doc": null,
"visible": true,
"line_color": {
"units": "data",
"value": "#e1e1e1"
},
"line_alpha": {
"units": "data",
"value": 1
},
"line_width": {
"units": "data",
"value": 1
},
"x": {
"units": "data",
"field": "x"
},
"y": {
"units": "data",
"field": "y"
}
}
},
{
"type": "Line",
"id": "02a057b620893a0c48f0dcd8de354f02",
"attributes": {
"id": "02a057b620893a0c48f0dcd8de354f02",
"tags": [],
"doc": null,
"visible": true,
"line_color": {
"units": "data",
"value": "black"
},
"line_alpha": {
"units": "data",
"value": 1
},
"line_width": {
"units": "data",
"value": 1
},
"x": {
"units": "data",
"field": "x"
},
"y": {
"units": "data",
"field": "y"
}
}
},
{
"type": "GlyphRenderer",
"id": "c219999a52cbabb369b59cf49ad418b4",
"attributes": {
"id": "c219999a52cbabb369b59cf49ad418b4",
"tags": [],
"doc": null,
"selection_glyph": null,
"nonselection_glyph": {
"type": "Line",
"id": "8994fe0d2b96ae26da582d65ee071b96"
},
"hover_glyph": {
"type": "Line",
"id": "02a057b620893a0c48f0dcd8de354f02"
},
"server_data_source": null,
"name": null,
"data_source": {
"type": "ColumnDataSource",
"id": "b5c25518231f9d947ed8ea93bdc807a9"
},
"glyph": {
"type": "Line",
"id": "d2344d765d2d26d53561972e87f1dd51"
}
}
},
{
"type": "Range1d",
"id": "855b06b5143027e4d28fbd56f354cd1a",
"attributes": {
"id": "855b06b5143027e4d28fbd56f354cd1a",
"tags": [],
"doc": null,
"start": 0.210062542133314,
"end": 6.48993745786669
}
},
{
"type": "Range1d",
"id": "38a564fc3ae79fcae972c4aedce6cc73",
"attributes": {
"id": "38a564fc3ae79fcae972c4aedce6cc73",
"tags": [],
"doc": null,
"start": -0.0617647058823529,
"end": 0.944117647058823
}
},
{
"type": "LinearAxis",
"id": "c777f597c0492c638fc6ca3c9aa79eb7",
"attributes": {
"id": "c777f597c0492c638fc6ca3c9aa79eb7",
"tags": [],
"doc": null,
"plot": {
"type": "Plot",
"id": "2bd6591010f5f4263e7539d8abd41161",
"subtype": "Figure"
},
"axis_label": "eruptions",
"formatter": {
"type": "BasicTickFormatter",
"id": "7b1b23ee5873368b4351f68c30e66e56"
},
"ticker": {
"type": "BasicTicker",
"id": "9a87362cf347d9040d4e1e98f5bfb066"
},
"visible": true,
"axis_label_text_font_size": "12pt"
}
},
{
"type": "BasicTickFormatter",
"id": "7b1b23ee5873368b4351f68c30e66e56",
"attributes": {
"id": "7b1b23ee5873368b4351f68c30e66e56",
"tags": [],
"doc": null
}
},
{
"type": "BasicTicker",
"id": "9a87362cf347d9040d4e1e98f5bfb066",
"attributes": {
"id": "9a87362cf347d9040d4e1e98f5bfb066",
"tags": [],
"doc": null,
"num_minor_ticks": 5
}
},
{
"type": "Grid",
"id": "37bd3b4c846f3688f2b5ff6f22ba2a29",
"attributes": {
"id": "37bd3b4c846f3688f2b5ff6f22ba2a29",
"tags": [],
"doc": null,
"dimension": 0,
"plot": {
"type": "Plot",
"id": "2bd6591010f5f4263e7539d8abd41161",
"subtype": "Figure"
},
"ticker": {
"type": "BasicTicker",
"id": "9a87362cf347d9040d4e1e98f5bfb066"
}
}
},
{
"type": "LinearAxis",
"id": "e96acc27b60637e37f71f0992e6a1759",
"attributes": {
"id": "e96acc27b60637e37f71f0992e6a1759",
"tags": [],
"doc": null,
"plot": {
"type": "Plot",
"id": "2bd6591010f5f4263e7539d8abd41161",
"subtype": "Figure"
},
"axis_label": "Density",
"formatter": {
"type": "BasicTickFormatter",
"id": "c43893a5d490a8537c29d04db8c7cdee"
},
"ticker": {
"type": "BasicTicker",
"id": "ed3cf9b6aa13bffb3258dbcca8fd4b38"
},
"visible": true,
"axis_label_text_font_size": "12pt"
}
},
{
"type": "BasicTickFormatter",
"id": "c43893a5d490a8537c29d04db8c7cdee",
"attributes": {
"id": "c43893a5d490a8537c29d04db8c7cdee",
"tags": [],
"doc": null
}
},
{
"type": "BasicTicker",
"id": "ed3cf9b6aa13bffb3258dbcca8fd4b38",
"attributes": {
"id": "ed3cf9b6aa13bffb3258dbcca8fd4b38",
"tags": [],
"doc": null,
"num_minor_ticks": 5
}
},
{
"type": "Grid",
"id": "ccbad37d6b0181b634abd78597617c0c",
"attributes": {
"id": "ccbad37d6b0181b634abd78597617c0c",
"tags": [],
"doc": null,
"dimension": 1,
"plot": {
"type": "Plot",
"id": "2bd6591010f5f4263e7539d8abd41161",
"subtype": "Figure"
},
"ticker": {
"type": "BasicTicker",
"id": "ed3cf9b6aa13bffb3258dbcca8fd4b38"
}
}
}
]
}
}
},
"debug": false,
"padding": {
"type": "figure",
"y_pad": 10,
"x_pad": 46
}
},
"evals": [],
"jsHooks": []
}
BokehJS
rbokeh Interface
-
Initialize a figure with figure() and add layers with pipes
-
Plots are highly customizable - for further control, other pipeable functions can augment aspects of a figure, including axes, themes, and interaction tools
-
Several features you are used to in ggplot2 are available, such as aesthetics, NSE, automatic range calculation if none specified, etc.
-
In addition to figure(), there is gmap() for superposition on a google map, grid_plot() for constructing a grid of figures
figure(data = iris) %>%
ly_points(Sepal.Length, Sepal.Width, color = Species)
20 examples in 5 minutes
1: iris data ("hello world")
figure(data = iris) %>%
ly_points(Sepal.Length, Sepal.Width, color = Species
hover = list(Sepal.Length, Sepal.Width))
2: custom hover and url on click
figure() %>%
ly_points(Sepal.Length, Sepal.Width, data = iris, color = Species,
hover = "The species of this point is '@Species'",
url = "https://www.google.com/search?q=@Species+iris")
3: adding non-default tools (e.g. lasso select)
figure() %>%
ly_points(1:10) %>%
tool_lasso_select()
# or
tools <- c("pan", "wheel_zoom", "box_zoom", "resize", "lasso_select",
"reset", "save", "help")
figure(tools = tools) %>%
ly_points(1:10) %>%
See here for details and more examples
4: modifying axes
figure() %>%
ly_points(Date, Packages, Ecdat::CRANpackages) %>%
y_axis(log = TRUE)
See here for details and more examples
5: stat layers: model fits
z <- lm(dist ~ speed, data = cars)
figure(width = 600, height = 600) %>%
ly_points(cars, hover = cars) %>%
ly_lines(lowess(cars), legend = "lowess") %>%
ly_abline(z, type = 2, legend = "lm")
6: stat layers: histogram / density
figure(width = 600, height = 400) %>%
ly_hist(eruptions, data = faithful, breaks = 40, freq = FALSE) %>%
ly_density(eruptions, data = faithful)
7: stat layers: hexbin
figure() %>%
ly_hexbin(rnorm(10000), rnorm(10000))
8: stat layers: bar
figure(data = mpg, legend_location = "top_left", width = 600) %>%
ly_bar(class, color = drv) %>%
theme_axis("x", major_label_orientation = 45)
9: categorical axes
# prepare data
elements <- subset(elements, !is.na(group))
elements$group <- as.character(elements$group)
elements$period <- as.character(elements$period)
# add colors for groups
metals <- c("alkali metal", "alkaline earth metal", "halogen",
"metal", "metalloid", "noble gas", "nonmetal", "transition metal")
colors <- c("#a6cee3", "#1f78b4", "#fdbf6f", "#b2df8a", "#33a02c",
"#bbbb88", "#baa2a6", "#e08e79")
elements$color <- colors[match(elements$metal, metals)]
elements$type <- elements$metal
# make coordinates for labels
elements$symx <- paste(elements$group, ":0.1", sep = "")
elements$numbery <- paste(elements$period, ":0.8", sep = "")
elements$massy <- paste(elements$period, ":0.15", sep = "")
elements$namey <- paste(elements$period, ":0.3", sep = "")
# create figure
p <- figure(title = "Periodic Table", tools = c("resize", "hover"),
ylim = as.character(c(7:1)), xlim = as.character(1:18),
xgrid = FALSE, ygrid = FALSE, xlab = "", ylab = "",
height = 445, width = 800) %>%
# plot rectangles
ly_crect(group, period, data = elements, 0.9, 0.9,
fill_color = color, line_color = color, fill_alpha = 0.6,
hover = list(name, atomic.number, type, atomic.mass,
electronic.configuration)) %>%
# add symbol text
ly_text(symx, period, text = symbol, data = elements,
font_style = "bold", font_size = "10pt",
align = "left", baseline = "middle") %>%
# add atomic number text
ly_text(symx, numbery, text = atomic.number, data = elements,
font_size = "6pt", align = "left", baseline = "middle") %>%
# add name text
ly_text(symx, namey, text = name, data = elements,
font_size = "4pt", align = "left", baseline = "middle") %>%
# add atomic mass text
ly_text(symx, massy, text = atomic.mass, data = elements,
font_size = "4pt", align = "left", baseline = "middle")
p
10: embedding images
url <- "https://raw.githubusercontent.com/weinfz/nba_shot_value_charts/master/court.png"
figure(width = 600, height = 600 * 0.7963461, padding_factor = 0,
xlab = NULL, ylab = NULL) %>%
ly_image_url(x = -300, y = -20, image_url = url, w = 600, h = 440, anchor = "bottom_left") %>%
ly_points(rnorm(100, 0, 50), rnorm(100, 200, 50), color = "black")
11: creating custom layer functions
ly_baseball <- function(x) {
base_x <- c(90 * cos(pi/4), 0, 90 * cos(3 * pi/4), 0)
base_y <- c(90 * cos(pi/4), sqrt(90^2 + 90^2), 90 * sin(pi/4), 0)
distarc_x <- lapply(c(2:4) * 100, function(a)
seq(a * cos(3 * pi/4), a * cos(pi/4), length = 200))
distarc_y <- lapply(distarc_x, function(x)
sqrt((x[1]/cos(3 * pi/4))^2 - x^2))
x %>%
## boundary
ly_segments(c(0, 0), c(0, 0), c(-300, 300), c(300, 300), alpha = 0.4) %>%
## bases
ly_crect(base_x, base_y, width = 10, height = 10,
angle = 45*pi/180, color = "black", alpha = 0.4) %>%
## infield/outfield boundary
ly_curve(60.5 + sqrt(95^2 - x^2),
from = base_x[3] - 26, to = base_x[1] + 26, alpha = 0.4) %>%
ly_multi_line(distarc_x, distarc_y, alpha = 0.4)
}
f <- tempfile()
download.file("https://gist.githubusercontent.com/hafen/77f25b556725b3d0066b/raw/10f0e811f09f2b9f0f9ccfb542e296dfac2761d4/doubles.csv", method="curl", f)
doubles <- read.csv(f)
figure(xgrid = FALSE, ygrid = FALSE, width = 630, height = 540,
xlab = "Horizontal distance from home plate (ft.)",
ylab = "Vertical distance from home plate (ft.)") %>%
ly_baseball() %>%
ly_hexbin(doubles, xbins = 50, shape = 0.77, alpha = 0.75, palette = "Spectral10")
Simply take a figure as input and return a modified figure as output
12: plotting on maps
bike <- read.csv("https://gist.githubusercontent.com/hafen/3d534ee95b964ef753ab/raw/dbe9f0cbe29d17151d852e8cc1c3466f7a7f02e9/201512_nycbike_summ.csv", stringsAsFactors = FALSE)
cdist <- read.csv("https://gist.githubusercontent.com/hafen/a447521ff8b24ddefba5/raw/044e174d7b9e6a370fff429f9cda4d0903b4c0a6/communitydistricts.csv")
bike$diff <- bike$n_start - bike$n_end
bike$color = ifelse(bike$diff > 0, "#2CA02C", "#D62728")
gmap(lat = 40.73306, lng = -73.97351, zoom = 12,
width = 680, height = 600, map_style = gmap_style("blue_water")) %>%
ly_polygons(x, y, group = which, data = cdist,
fill_alpha = 0.1, line_width = 2, color = "orange") %>%
ly_points(lon, lat, data = bike,
hover = c(station, n_start, n_end, diff),
fill_alpha = 0.8, size = abs(diff), color = color, legend = FALSE)
More tile-based map options to come
13: plotting lots of points
figure(webgl = TRUE) %>%
ly_points(rnorm(100000), rnorm(100000), alpha = 0.2)
Not all glyphs supported by WebGL (but will soon!)
14: linked pan / zoom / brush
tools <- c("pan", "wheel_zoom", "box_zoom", "box_select", "reset")
nms <- expand.grid(names(iris)[1:4], rev(names(iris)[1:4]), stringsAsFactors = FALSE)
splom_list <- vector("list", 16)
for(ii in seq_len(nrow(nms))) {
splom_list[[ii]] <- figure(width = 130, height = 130, tools = tools,
xlab = nms$Var1[ii], ylab = nms$Var2[ii]) %>%
ly_points(nms$Var1[ii], nms$Var2[ii], data = iris,
color = Species, size = 5, legend = FALSE)
}
grid_plot(splom_list, ncol = 4, same_axes = TRUE, link_data = TRUE)
15: embed in shiny application
server <- shinyServer(function(input, output, session) {
# Combine the selected variables into a new data frame
selectedData <- reactive({
iris[, c(input$xcol, input$ycol)]
})
clusters <- reactive({
kmeans(selectedData(), input$clusters)
})
output$plot1 <- renderRbokeh({
pal <- c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3",
"#FF7F00", "#FFFF33", "#A65628", "#F781BF", "#999999")
cts <- data.frame(clusters()$centers)
figure(width = 500, height = 500) %>%
ly_points(selectedData(), color = pal[clusters()$cluster]) %>%
ly_points(cts, size = 40, glyph = 4, line_width = 4, color = "black")
})
})
ui <- shinyUI(pageWithSidebar(
headerPanel('Iris k-means clustering'),
sidebarPanel(
selectInput('xcol', 'X Variable', names(iris)),
selectInput('ycol', 'Y Variable', names(iris),
selected = names(iris)[[2]]),
numericInput('clusters', 'Cluster count', 3,
min = 1, max = 9)
),
mainPanel(
rbokehOutput('plot1')
)
))
shinyApp(ui, server)
16: direct shiny interactivity
library("shiny")
library("rbokeh")
dat <- data.frame(x = rnorm(10), y = rnorm(10))
ui <- fluidPage(
rbokehOutput("rbokeh", width = 450, height = 450),
strong("x range change event:"),
textOutput("x_range_text"),
strong("y range change event:"),
textOutput("y_range_text"),
strong("hover event:"),
textOutput("hover_text"),
strong("triggered by tap/click:"),
htmlOutput("tap_text"),
strong("index of selected triggered by any selection:"),
textOutput("selection_text")
)
server <- function(input, output, session) {
output$rbokeh <- renderRbokeh({
figure() %>%
ly_points(x = x, y = y, data = dat,
hover = list(x, y), lname = "points") %>%
tool_hover(shiny_callback(id = "hover_info"), "points") %>%
tool_tap(shiny_callback(id = "tap_info"), "points") %>%
tool_box_select(shiny_callback(id = "selection_info"), "points") %>%
x_range(callback = shiny_callback(id = "x_range")) %>%
y_range(callback = shiny_callback(id = "y_range"))
})
output$x_range_text <- reactive({
xrng <- input$x_range
if(!is.null(xrng)) {
paste0("start: ", xrng$start, ", end: ", xrng$end)
} else {
"waiting for x-axis pan/zoom event (use pan/zoom to trigger)..."
}
})
output$y_range_text <- reactive({
yrng <- input$y_range
if(!is.null(yrng)) {
paste0("start: ", yrng$start,", end: ", yrng$end)
} else {
"waiting for y-axis pan/zoom event (use pan/zoom to trigger)..."
}
})
output$hover_text <- reactive({
hi <- input$hover_info
if(!is.null(hi)) {
paste0("index: ", hi$index[["1d"]]$indices, ", x: ",
hi$geom$sx, ", y:", hi$geom$sy)
} else {
"waiting for hover event (hover over plot or points on plot to trigger)..."
}
})
output$tap_text <- reactive({
ti <- input$tap_info
if(!is.null(ti)) {
paste("index:", paste(ti, collapse = ", "))
} else {
"waiting for tap/click event (click point(s) to trigger)..."
}
})
output$selection_text <- reactive({
si <- input$selection_info
if(!is.null(si)) {
paste("index:", paste(si, collapse = ", "))
} else {
"waiting for selection event (click point(s) or use box select tool to trigger)..."
}
})
}
shinyApp(ui, server)
17: custom JS callback 1
figure(title = "hover a blue point") %>%
ly_points(1:10, lname = "blue", lgroup = "g1", size = 20) %>%
ly_points(2:12, lname = "orange", lgroup = "g1") %>%
tool_hover(custom_callback(
code = "if(cb_data.index['1d'].indices.length > 0)
orange_data.get('data').x[cb_data.index['1d'].indices] += 0.1
orange_data.trigger('change')", "orange"), "blue")
18: custom JS callback 2
dat <- data.frame(x = runif(500), y = runif(500))
p <- figure(title = "select points to adjust mean line",
tools = "lasso_select") %>%
ly_points(x, y, data = dat, lname = "points") %>%
ly_lines(x = c(0, 1), y = rep(mean(dat$y), 2),
line_width = 6, color = "orange", alpha = 0.75,
lname = "mean")
code <- "
var inds = cb_obj.get('selected')['1d'].indices;
var d = cb_obj.get('data');
var ym = 0;
if (inds.length == 0) { return; }
for (i = 0; i < inds.length; i++) {
ym += d['y'][inds[i]];
}
ym /= inds.length;
mean_data.get('data').y = [ym, ym];
cb_obj.trigger('change');
mean_data.trigger('change');
"
p %>% tool_lasso_select(
custom_callback(code, "mean"), "points")
19: custom JS callback 3
range_callback <- custom_callback("
var rdiff = range.get('end') - range.get('start')
var zoomed_in = hexbin_glyph.get('_zoomed_in')
if(rdiff < 1.5) {
hexbin_glyph.get('_zoomed_in', true)
points_glyph.set('visible', true)
points_hov_glyph.set('visible', true)
hexbin_glyph.set('visible', false)
hexbin_hov_glyph.set('visible', false)
hexbin_glyph.trigger('change')
hexbin_hov_glyph.trigger('change')
points_glyph.trigger('change')
points_hov_glyph.trigger('change')
} else if(rdiff >= 1.5) {
hexbin_glyph.get('_zoomed_in', false)
points_glyph.set('visible', false)
points_hov_glyph.set('visible', false)
hexbin_glyph.set('visible', true)
hexbin_hov_glyph.set('visible', true)
hexbin_glyph.trigger('change')
hexbin_hov_glyph.trigger('change')
points_glyph.trigger('change')
points_hov_glyph.trigger('change')
}
", c("hexbin", "points"))
figure() %>%
ly_points(x, y, data = dat,
visible = FALSE, lname = "points") %>%
ly_hexbin(x, y, data = dat, hover = FALSE,
lname = "hexbin") %>%
x_range(callback = range_callback) %>%
y_range(callback = range_callback)
20: embedded in trelliscope
panel <- function(x)
figure() %>% ly_points(time, medListPriceSqft, data = x)
hcog <- function(x) {
slp <- coef(lm(medListPriceSqft ~ time, data = x))[2]
list(
slope = cog(slp, desc = "list price slope"),
meanList = cogMean(x$medListPriceSqft),
meanSold = cogMean(x$medSoldPriceSqft)
)
}
housingData::housing %>%
qtrellis(by = c("county", "state"), panel, hcog, layout = c(2, 4))
Resources
- Documentation: http://hafen.github.io/rbokeh/
- Github: https://github.com/bokeh/rbokeh
- Bokeh examples
- Blog: http://ryanhafen.com/blog/
- @BokehPlots
- @hafenstats
install.packages("rbokeh")
Thanks
Some thoughts on interactivity in EDA
- Data analysis is iterative and visualization is usually the driver
- We must be able to quickly generate plots to explore, investigate ideas, validate models, etc.
- Any interactivity in our plots must be very easily specifiable
- This is not easy! (outside of simple but very useful transient interactions like pan / zoom / hover / click / select that we already get with things like rbokeh)
- Something to think about: in EDA, what do we really need in terms of interactivity?
- I actually don't think it's possible for an ad-hoc statistical visualization system to provide a flexible, rapidly specifiable interactivity scheme
- Unless you think in terms of Trelliscope (conditioning + cognostics)
rbokeh
By Ryan Hafen
rbokeh
A Simple, Flexible, Declarative Framework for Interactive Graphics (given at useR! 2016 and JSM 2016)
- 9,619