Primordial Black Hole Formation by a Spherical Domain Wall

Heling Deng

· Introduction
· Simulation
· Results

Introduction

\phi
V(\phi)

 Ipser & Sikivie (1984)

Minkowski

Schwarzschild

 Blau, Guendelman & Guth (1987)

de Sitter

Schwarzschild

FRW

FRW

  • Two characteristic time scales
t_{\sigma}=\frac{1}{2\pi\sigma}
ds^{2}=-\left(1-\frac{\left|x\right|}{t_{\sigma}}\right)^{2}dt^{2}+dx^{2}+\left(1-\frac{\left|x\right|}{t_{\sigma}}\right)^{2}e^{2t/t_{\sigma}}\left(dy^{2}+dz^{2}\right)

1. Wall expansion

2. Cosmological expansion 

t_{H}=\frac{8r_{i}^{3}}{27t_{i}^{2}}

(dust)

t_{H}=\frac{r_{i}^{2}}{4t_{i}}

(radiation)

Hubble crossing

ar_i=\frac{1}{H}
(\sigma)
(r_i)
  • Two parameters:
\sigma,\ r_i

where

  • Critical behavior
t_{\sigma}\gg t_{H}

1. Subcritical

2. Supercritical

t_{\sigma}\ll t_{H}

Collapses

Grows without bound

Wormhole

BH

BH

  • Matching on the wall
\ddot{r}+(4-3a^{2}\dot{r}^{2})H\dot{r}+\frac{2}{a^{2}r}(1-a^{2}\dot{r}^{2})=6\pi\sigma\frac{(1-a^{2}\dot{r}^{2})^{\frac{3}{2}}}{a}

EOM:

FRW +

ds^{2}=-dt^{2}+B^{2}(r,t)dr^{2}+R^{2}(r,t)d\Omega^{2}

Dust

Radiation

Simulation

  • Metric
ds^{2}=-dt^{2}+B^{2}dr^{2}+R^{2}d\Omega^{2}
  • Energy-momentum tensor
T_{\nu}^{(\phi)\mu}=\partial^{\mu}\phi\partial_{\nu}\phi-\delta_{\nu}^{\mu}\left[\frac{1}{2}(\partial \phi)^{2}-V(\phi)\right]
T_{\nu}^{(f)\mu}=\left(\rho+p\right)u^{\mu}u_{\nu}-\delta_{\nu}^{\mu}p
u^{\mu}=\left(\frac{1}{\sqrt{1-v^{2}}},\frac{v}{B\sqrt{1-v^{2}}},0,0\right)
  • Variable transformations
r\to\frac{r}{H_{i}},\ t\to\frac{t}{H_{i}},\ \rho\to M_{Pl}^{2}H_{i}^{2}\rho,\ \phi\to M_{Pl}\phi,\ V\to M_{Pl}^{2}H_{i}^{2}V
  • Einstein equations + KG equation​
B, R, \phi, \rho, v
  • Initial and boundary conditions
  • BH apparent horizon​
\Theta_{out}\propto\frac{\dot{R}+\frac{R^{\prime}}{B}}{R},\ \Theta_{in}\propto\frac{\dot{R}-\frac{R^{\prime}}{B}}{R}
\Theta_{out}=0,\ \Theta_{in}<0
  • Misner-Sharp mass
M=\frac{R}{2}(1-\frac{R^{\prime2}}{B^{2}}+\dot{R}^{2})
  • Expansions of radial null geodesics

Subcritical wall

  • Initial BH mass
M_{BHi}=4\pi\sigma CR_{H}^{2}

where

R_{H}=\frac{1}{H(t_{H})}
C_{dust}\approx0.2,\ C_{radiation}\approx0.6

Garriga, Vilenkin, Zhang (2016)

Dust

Radiation

  •     after BH excision
\rho

Dust

Radiation

  • BH mass evolution
M_{BHf} = M_H = \frac{1}{2}r_i^3
M_{BHf} =\ ?
  • Final BH
\frac{dM_{BH}(t)}{dt}=4\pi FR^{2}_{BH}\rho(t)
M_{BH}(t)=\frac{1}{\frac{1}{M_{0}}+\frac{3}{2}F\left(\frac{1}{t}-\frac{1}{t_{0}}\right)}
M_{BHf}=\frac{1}{\frac{1}{M_{0}}-\frac{5.7}{t_{0}}}
F\approx 3.8

Supercritical wall

  • Fluid pushed away
  • Singularity arises

Dust

Radiation

  •     after BH excision

Dust

Radiation

\rho
  • Wormhole formation
  • Spacetime structure
  • Spacetime structure
  • BH mass evolution

Dust

Radiation

  • BH mass in dust universe
M_{BHf}^{(in)} \approx M_H = \frac{1}{2}r_i^{3}
  • Inner BH mass in radiation universe
M_{BHf}^{(in)} \approx 2.8 M_H = 1.4 r_i^2
  • Outer BH mass in radiation universe
  • Outer BH mass accretion
M_{BH2}^{(out)}(Kt)=KM_{BH1}^{(out)}(t)

Self-similar process

K\approx\frac{M_{BHi2}}{M_{BHi1}}\approx\left(\frac{r_{i2}}{r_{i1}}\right)^{2}

where

\frac{M_{BHf2}^{(out)}}{M_{BHf1}^{(out)}}\approx\left(\frac{r_{i2}}{r_{i1}}\right)^{2}
M_{BHf}^{(out)}\approx2M_{BHi}

We found that

Conclusions

  • Subcritical

Dust

\ M_{BHf} = M_H
M_{BHf} \sim \sigma R_H^2

Radiation

  • Supercritical

Dust

M^{(out)}_{BHf} \approx 2M^{(in)}_{BHf} \approx 5.6 M_H

Radiation

M^{(out)}_{BHf}, M^{(in)}_{BHf} = M_H

deck

By Heling Deng

deck

  • 215