Flexible Image modelling for deblending

Rémy Joseph

MLxCosmo December 17th 2020

Collaborators: Peter Melchior, Fred Moolekamp, Frederic Courbin (EPFL, SW), Jean-Luc Starck (CEA, FR), Aymeric Galan (EPFL), Austin Peel, Martin Millon (EPFL), François Lanusse (CNRS, FR), Jiaxuan Li (PKU), Jenny Greene, Johnny Greco (OSU).

The problem of blending

  • Blending: The apparent ovelap of objects on the plane of the sky
  • Expected blending in Rubin: 67% of galaxies
    Euclid: 43%
    Sanchez et al. (in prep)
  • Affects galaxy shapes, counts and photometric redshift measurements

Modelling astro images for

Deblending

 

Galaxy light profile

Telescope refraction (convolution)

Instrument acquisition (pixelation)

Instrumental noise

(HM)_{[x,y]}+N_{[x,y]}
(R*P*M)_{[x,y]}
P*M
M

In practice

 

I_{[x,y]} = (H\sum_i M_i)_{[x,y]}+N_{[x,y]}

Pixelated model

M^{\star} = \underset{M}{argmin}||I-HM||_2^2 + C(M)
  • Get creative about what constraints to use
  • Example: The SDSS deblender: symmetry & Monotonicity

Robert Lupton

SCARLET

$$I_j = R*P_j * \sum_{i,n} a_{j,i,n}m_{i,n} +N_j$$

Melchior et al. 2016 ( arXiv:1802.10157)

GitHub: https://github.com/pmelchior/scarlet

  • morphological assumptions as constraints:
    • Positivity: All non-zero pixels must have positive values
    • Monotonicity: Profiles smoothly decrease for the centre out.
    • Symmetry: Pixels about the central pixel take the value of the minimum of the two (Obsolete since Melchior, Joseph, Moolekamp 2019)
    • Bounding: Each galaxy profile is contained in a finite bounding box

SCARLET:

Modelling multi-band images

F435w

F606w

F814w

NASA/ESA: Hubble Frontier Fields, MACSJ 1149, Lotz et al. (2016)

  • RGB images are collections of band in different filters

SCARLET

  • Colour-based: each band is a linear combination of monochromatic components

F435w: \(I_2\)

F606w: \(I_1\)

F814w: \(I_0\)

$$I_j = H_j \sum_i a_{j,i}m_i + N_j$$

$$m_0$$

$$m_1$$

$$I$$

SCARLET

Melchior et al. 2016 ( arXiv:1802.10157)

GitHub: https://github.com/pmelchior/scarlet

Linear Optimisation

Constraints: Positivity, Monotonicity, Bounding.

Functional decompositions:

The Starlet transfrom

Starlet coefficients

  • Multiscale transformation
  • Decomposition in B-splines at different spatial scales

Starlet basis set

Constraints on starlet coefficients

Is achieved by reconstructing sparse fields in starlets:

\( \tilde{S} = \underset{S}{argmin}\) \( \frac{1}{2}||I-HA\Phi S||^2_2 \) \(+\) \(\lambda||S||_1\) \(+\) \(\mathcal{i}_+(\Phi S) \)

Likelihood           Sparsity      Positivity

                   (smoothness constraint)

MuSCADeT: Joseph et al. 2016 (arxiv:1603.00473)

GitHub: https://github.com/herjy/MuSCADeT

$$I_j = R*P_j * \sum_i a_{j,i}\Phi s_i + N_j, \qquad m_i = \Phi s_i$$

NASA/ESA: Hubble Frontier Fields, MACSJ 0416, Lotz et al. (2016)

Complex galaxies

F814w

F435w

RGB

MuSCADeT Red

MuSCADeT Blue

Low Surface Brightness Galaxies

On going work with Johnny Greco, Jiaxuan Li & Jenny Greene

HSC image

image-model

LSB model

Residuals

Reconstruction of strongly lensed source

I_{[x,y]} = H(FM)_{[x,y]}+N_{[x,y]}

Reconstruction of strongly lensed source

$$I_j = R*P_j * \sum_{i,n} a_{j,i,n}m_{i,n}$$

PixelCNN as a prox

In scarlet

  • Scarlet is flexible to the kind of constraints we can impose on morphology. We are now implementing priors PixelCNN Lanusse et al. 2019:

$$p(m) = \prod_k p(m_k|m_{k-1}, ..., s_0) $$

\( \tilde{M} = \underset{M}{argmin}\) \( \frac{1}{2}||I-HAM||^2_2 \) \(+\) \(\sum_i p(m_i)\)

Last thoughts

  • Modelling images:
    • Understanding the formation of images
    • Great data require great models (flexibility & scalability)
    • Flexible models need flexible priors:
      • Knowledge of galaxy morphology:  Monotonicity, Smoothness, Positivity, ML
  • Data can get even more complicated: 
    • Integral Field Units
    • spectral information
    • How to incorporate dust?
    • varying PSF
    • Multi-resolution processing

MuSCADeT

The algorithm

  • Estimate the mixing matrix A (default)

Colours are extracted from the scene using Principal Component Analysis (PCA) of the multi-band pixels

SCARLET

Melchior et al. 2016 ( arXiv:1802.10157)

GitHub: https://github.com/pmelchior/scarlet

Weakness (of the model): Monotonicity can causes trails and shadows.

Functional decompositions:

The Starlet transfrom

Illustration: Detection in crowded fields

Credit: Fred Moolekamp

NGC 6569

Sep detection

NGC 6569

Starlet+Sep detection

NGC 6569

Starlet level 1

Stockholm talk

By herjy