Astronomical Image modelling and applications: deblending, strong gravitational lensing

Rémy Joseph

Princeton, September 10th 2020

Collaborators: Peter Melchior, Fred Moolekamp, Frederic Courbin (EPFL, SW), Jean-Luc Starck (CEA, FR), Aymeric Galan (EPFL, SW), Martin Millon (EPFL, SW), François Lanusse (CNRS, FR),

Modelling astro images

 

Galaxy light profile

Telescope refraction (convolution)

Instrument acquisition (pixelation)

Instrumental noise

(R*P*M)_{[x,y]}+N_{[x,y]}
(R*P*M)_{[x,y]}
P*M
M

Possible model:

M^\star_{I, b, R_e, n}(x,y) = I e^{-b (\frac{R(x,y)}{R_e})^{1/n}-1}

Sersic profile

Modelling astro images

 

Galaxy light profile

Telescope convolution

Instrument acquisition (pixelation)

Instrumental noise

Analytic Sersic profile

Modelling astro images

 

Galaxy light profile

Telescope convolution

Instrument acquisition (pixelation)

Instrumental noise

Analytic Sersic profile

Residuals

In practice

 

(R*P*\sum_i M_i)_{[x,y]}+N_{[x,y]}

Alternatives

  • Pixelated models: Every pixel is a free parameter
  • Machine learning model
  • Basis decomposition:
    • PCA
    • Polynomials, shapelets
    • Wavelets
    • ...
M^{\star}(x, y) = \sum_i a_i F_i(x, y)

Pixelated model

I_{[x,y]} = R*P*M_{[x,y]} +N_{[x,y]}
I_{[x,y]}

Solution for M is not unique

Solution space:

M^{\star} \in M \setminus ||I-R*P*M||_2^2 < \epsilon

Pixelated model

I_{[x,y]} = P*M_{[x,y]} +N_{[x,y]}
I_{[x,y]}

Requires constraints

M^{\star} = \underset{M}{argmin}||I-R*P*M||_2^2 + C(M)
M^{\star} = \underset{M}{argmin}||I-R*P*M||_2^2 + ||M||_2^2

Example: limiting the 2-norm of the solution

Pixelated model

M^{\star} = \underset{M}{argmin}||I-R*P*M||_2^2 + C(M)
  • Get creative about what constraints to use
  • Example: The SDSS deblender: symmetry & Monotonicity

Robert Lupton

SCARLET

$$I_j = R*P_j * \sum_{i,n} a_{j,i,n}m_{i,n} +N_j$$

Melchior et al. 2016 ( arXiv:1802.10157)

GitHub: https://github.com/pmelchior/scarlet

  • morphological assumptions as constraints:
    • Positivity: All non-zero pixels must have positive values
    • Monotonicity: Profiles smoothly decrease for the centre out.
    • Symmetry: Pixels about the central pixel take the value of the minimum of the two (Obsolete since Melchior, Joseph, Moolekamp 2019)
    • Bounding: Each galaxy profile is contained in a finite bounding box

SCARLET:

Modelling multi-band images

F435w

F606w

F814w

NASA/ESA: Hubble Frontier Fields, MACSJ 1149, Lotz et al. (2016)

  • RGB images are collections of band in different filters

SCARLET

  • Colour-based: each band is a linear combination of monochromatic components

F435w: \(I_2\)

F606w: \(I_1\)

F814w: \(I_0\)

$$I_j = R*P_j * \sum_i a_{j,i}m_i + N_j$$

$$m_0$$

$$m_1$$

$$I$$

SCARLET

Melchior et al. 2016 ( arXiv:1802.10157)

GitHub: https://github.com/pmelchior/scarlet

Linear Optimisation

Constraints: Positivity, Monotonicity, Bounding.

SCARLET

Melchior et al. 2016 ( arXiv:1802.10157)

GitHub: https://github.com/pmelchior/scarlet

Weakness (of the model): Monotonicity can causes trails and shadows.

Functional decompositions:

The Starlet transfrom

Starlet coefficients

  • Multiscale transformation
  • Decomposition in B-splines at different spatial scales

Starlet basis set

Functional decompositions:

The Starlet transfrom

Illustration: Detection in crowded fields

Credit: Fred Moolekamp

NGC 6569

Sep detection

NGC 6569

Starlet+Sep detection

NGC 6569

Starlet level 1

Constraints on starlet coefficients

Is achieved by reconstructing sparse fields in starlets:

\( \tilde{S} = \underset{S}{argmin}\) \( \frac{1}{2}||I-HA\Phi S||^2_2 \) \(+\) \(\lambda||S||_1\) \(+\) \(\mathcal{i}_+(\Phi S) \)

Likelihood           Sparsity      Positivity

                   (smoothness constraint)

MuSCADeT: Joseph et al. 2016 (arxiv:1603.00473)

GitHub: https://github.com/herjy/MuSCADeT

$$I_j = R*P_j * \sum_i a_{j,i}\Phi s_i + N_j, \qquad m_i = \Phi s_i$$

NASA/ESA: Hubble Frontier Fields, MACSJ 0416, Lotz et al. (2016)

Complex galaxies

F814w

F435w

RGB

MuSCADeT Red

MuSCADeT Blue

Low Surface Brightness Galaxies

Sep detection

Starlet + Sep detection

On going work with Johnny Greco

Low Surface Brightness Galaxies

On going work with Johnny Greco

Data

Scarlet model

Residuals

Monotonicity + Positivity:

Starlet sparsity + Positivity:

Low Surface Brightness Galaxies

On going work with Johnny Greco

Starlet sparsity + Positivity:

Model

Spectrum

g     r      i      z      y

Reconstruction of strongly lensed source

I_{[x,y]} = F(R*P*M)_{[x,y]}+N_{[x,y]}

Reconstruction of strongly lensed source

Credit: Aymeric Galan

SLITronomy

Joseph et al. 2018

Galan et al. 2020

Disclaimer: it can be improved

$$I_{j\in [0,k]} = H P_j * \sum_{i,n} a_{j,i,n}s_{i,n} + N_j$$

SCARLET

  • Scarlet is flexible enough to handle models at a resolution different from the data. Now \(H\) accounts for the resampling of the model.

HST cosmos, F814w

HSC DR2, grizy

\(I_1\)

\(I_2\)

$$I_{j\in [k+1,n]} = R * P_j * \sum_{i,n} a_{j,i,n}s_{i,n} + N_j$$

pixels

wavelength

pixels

pixels

Combining surveys at different resolutions

HST cosmos, F814w

HSC DR2, grizy

\(I_1\):

\(I_2\):

pixels

SCARLET

Multi-resolution fitting: Finding a model at high resolution that fits datasets at different resolutions:

\(I_1\)

\(I_2\)

\( \tilde{M} = \underset{M}{argmin}\) \( \frac{1}{2}||I_1-HPAM||^2_2 \) \(+\) \( \frac{1}{2}||I_2-RP'AM||^2_2 \)\(+\)\(\sum_i p(m_i)\)

High resolution

Low resolution

HST cosmos, F814w

HSC DR2, grizy

Scarlet model

1

2

4

3

5

6

1

2

4

3

5

6

1

2

4

3

5

6

$$I_j = R*P_j * \sum_{i,n} a_{j,i,n}m_{i,n}$$

SCARLET

  • Scarlet is flexible to the kind of constraints we can impose on morphology. We are now implementing priors from machine learning Lanusse et al. 2019:

$$p(m) = \prod_k p(m_k|m_{k-1}, ..., s_0) $$

\( \tilde{M} = \underset{M}{argmin}\) \( \frac{1}{2}||I-RPAM||^2_2 \) \(+\) \(\sum_i p(m_i)\)

Last thoughts

  • Modelling images:
    • Understanding the formation of images
    • Incorporating assumptions as prior:
      • Knowledge of galaxy morphology:  Symmetry, Monotonicity, Smoothness (sparsity), Positivity
      • How to incorporate dust?
  • Data can get even more complicated: 
    • Integral Field Units
    • spectral information
    • varying PSF
    • Reconstructing shear/lensing maps

MuSCADeT

The algorithm

  • Gradient step
  • Find S close from U with the smallest \(\ell_0\) norm
  • Set negative entries to 0

$$U \gets S+\mu A^T H^T (Y-HAS)$$

$$S \gets \Phi \underset{\alpha_S}{argmin}\frac{1}{2}||U-\Phi\alpha_S||_2^2+\lambda|| \alpha_S||_0$$

$$S[S<0]\gets 0$$

  • Estimate the mixing matrix A

MuSCADeT

The algorithm

  • Estimate the mixing matrix A (default)

Colours are extracted from the scene using Principal Component Analysis (PCA) of the multi-band pixels

The problem of speed

\(f_2(X, Y) = \sum_{x_k, y_j} f_1(x_k, y_j) P(X-x_k, Y-y_j)\)

As many operations as there are distances between red and blue points, i.e. \(M^2N^2\)

M

N

Interpolation at different resolution

Euclid-like

HST-like

Resampling and difference convolution can be done as one operation:

\(M(X, Y) = \sum_{x_k, y_j} m(x_k, y_j) H(X-x_k, Y-y_j)\)

Interpolation with difference kernel as the interpolation kernel. (Demo-ish in back up slide)

\(H(x,y) = \mathcal{F}^{-1}(\frac{\tilde{p_2}}{\tilde{p_1}})(-x,-y)\)

The problem of speed

\(f_2(X, Y) = \sum_{x_k, y_j} f_1(x_k, y_j) P(\frac{X}{h}-x_k, \frac{Y}{h}-y_j)\)

Reformulate to share the distance calculations along directions of constant coordinates:

\(f_2(X, Y) = \sum_{x_k, y_j} f_1(x_k-X_1cos\theta, y_j+X_1sin\theta) \times P(-Y_1sin\theta-x_k, -Y_1cos\theta-y_j)\)

\(X = hX_1cos\theta + hY_1sin\theta\)

\(Y = -hX_1sin\theta + hY_1cos\theta\)

Shifts along two directions

The problem of speed

\(f_2(X, Y) = \sum_{x_k, y_j} f_1(x_k-X_1cos\theta, y_j+X_1sin\theta) \times P(-Y_1sin\theta-x_k, -Y_1cos\theta-y_j)\)

  • Shifts along \(2\times M\) directions instead of \(M^2\)
  • Multiplcation of two matrices :                    \(N^2M \times MN^2 = M^2N^2\) operations
  • Orders of magnitude faster than computing and multiplying by the \(P(X-x_k, Y-y_j)\) kernel

Interpolation kernel is actually a sinc

\(f_2(X) = (f_1*P)(X) = (\sum_{x_k} f_1(x_k)sinc(\frac{X-x_k}{h}))*(\sum_{x_p}P(x_p)sinc(\frac{X-x_p}{h}))\)

\(f_2(X) = (f_1*P)(X) = \sum_{x_k} f_1(x_k)\sum_{x_l}P(x_l)sinc(\frac{X-x_k - x_l}{h})\)

\(f_2(X) = (f_1*P)(X) = \sum_{x_k} f_1(x_k)\sum_{x_l}P(x_l- X)sinc(\frac{x_k + x_l}{h})\)

Making sure we get the pixel response right

\(I_2(x_{i2},y_{j2}).\) = \((rect_{h_1}*(f*p_1) *{F}^{-1}(\frac{\hat{rect_{h_2}}}{\hat{rect_{h_1}}}\frac{\hat{p_2}}{\hat{p_1}}))(x_{i2},y_{j2})\)

\(I_2(x_{i2},y_{j2}) = (rect_{h_2}*p_2*f)(x_{i2},y_{j2})\)

Deblending

By herjy