Uncertainty Quantification in CT Denoising

Jacopo Teneggi, Matthew Tivnan, J. Webster Stayman, and Jeremias Sulam

57th Annual Conference on Information Science and Systems

Inverse problems in Image Processing

restoration

inpainting

CT reconstruction

Inverse problems in Image Processing

restoration

inpainting

CT reconstruction

CT Denoising

To retrieve the ground-truth signal \(x\) given a noisy observation \(y\) with

\[y = x + v,~v \sim \mathcal{N}(0, \mathbb{I})\]

Supervised Learning Approach

Given a set \(S = \{(x_i, y_i)\}_{i=1}^n\) train \(f:~\mathcal{Y} \to \mathcal{X}\) such that

\[\hat{f} = \arg\min~\frac{1}{n} \sum_{(x_i, y_i) \in S} \|x_i - f(y_i)\|^2\]

Original

Perturbed

Denoised

Supervised Learning Approach

Given a set \(S = \{(x_i, y_i)\}_{i=1}^n\) train \(f:~\mathcal{Y} \to \mathcal{X}\) such that

\[\hat{f} = \arg\min~\frac{1}{n} \sum_{(x_i, y_i) \in S} \|x_i - f(y_i)\|^2\]

Original

Perturbed

Denoised

Some disadvantages

- Loss of high-frequency information

- Point predictors

An Alternative Approach

Sample from the conditional posterior distribution

\[p(x \mid y)\]

by means of a stochastic function \(F:~\mathcal{Y} \to \mathcal{X}\).

Original

Perturbed

Sampled

An Alternative Approach

Sample from the posterior distribution

\[p(x \mid y)\]

by means of a stochastic function \(F:~\mathcal{Y} \to \mathcal{X}\)

Original

Perturbed

Sampled

Advantages

- Varied and high-quality samples

- Can be conditioned on several measurement models

Is the Model Right?

Is the Model Right?

Desired Guarantees

- How different will a new sample \(F(y)\) be?

- How far from the ground-truth signal \(x\)? 

Entrywise Calibrated Quantiles

Fix \(y \in \mathbb{R}^d\) and sample \(m\) times from \(F(y) \in \mathbb{R}^d\)

Q: Where will the \((m+1)^{\text{th}}\) sample be?

Lemma (informal) For every feature \(j \in [d]\)

\[\mathcal{I}(y)_j = \left[\text{lower cal. quantile}, \text{upper cal. quantile}\right]\]

provides entrywise coverage, i.e.

\[\mathbb{P}\left[\text{next sample}_j \in \mathcal{I}(y)_j\right] \geq 1 - \alpha\]

Calibrated quantiles For a miscoverage level \(\alpha\)

 

 

 

\(0\)

\(1\)

\(\frac{\alpha}{2}\)

\(\frac{(1 -\alpha)}{2}\)

\(\frac{\lfloor(m+1)\alpha/2\rfloor}{m}\)

\(\frac{\lceil(m+1)(1 - \alpha/2)\rceil}{m}\)

Entrywise Calibrated Quantiles

Original

Perturbed

Lower

Upper

Interval size

Conformal Risk Control

For a pair \((x, y)\) sample from \(F(y)\) and compute \(\mathcal{I}(y)\)

Q: How many ground-truth features \(x_j\) are not in their respective intervals \(\mathcal{I}(y)_j\)?

Risk Controlling Prediction Sets (RCPS) For a risk level \(\epsilon\) and failure probability \(\delta\)

\[\mathbb{P}\left[\mathbb{E}\left[\text{number of pixels not in intervals}\right] \leq \epsilon\right] \geq 1 - \delta\]

RCPS Procedure

Procedure Define

\[\mathcal{I}_{\lambda}(y)_j = [\text{lower} - \lambda, \text{upper} + \lambda]\]

and choose

\[\hat{\lambda} = \inf\{\lambda \in \mathbb{R}:~\text{risk is controlled},~\forall \lambda' \geq \lambda\}\]

\(\lambda\)

\(R(\lambda)\)

\(\epsilon\)

\(\lambda^*\)

risk is controlled

RCPS Procedure

Procedure Define

\[\mathcal{I}_{\lambda}(y)_j = [\text{lower} - \lambda, \text{upper} + \lambda]\]

and choose

\[\hat{\lambda} = \inf\{\lambda \in \mathbb{R}:~\text{risk is controlled},~\forall \lambda' \geq \lambda\}\]

\(\lambda\)

\(R(\lambda)\)

\(\epsilon\)

\(\lambda^*\)

risk is controlled

Limitations

- Choosing a scalar \(\lambda\) may be suboptimal

- No explicit minimization of interval length

\(K\)-RCPS

For \(\bm{\lambda} \in \mathbb{R}^d\) define

\[\mathcal{I}_{\bm{\lambda}}(y)_j = [\text{lower} - \lambda_j, \text{upper} + \lambda_j]\]

and minimize the mean interval length with risk control

\[\hat{\bm{\lambda}} = \arg\min~\sum_{j \in [d]} \lambda_j~\quad\text{s.t. risk is controlled}\]

THE CONSTRAINT SET IS NOT CONVEX

\[\downarrow\]

NEED FOR A CONVEX RELAXATION

\(K\)-RCPS

For \(\bm{\lambda} \in \mathbb{R}^d\) define

\[\mathcal{I}_{\bm{\lambda}}(y)_j = [\text{lower} - \lambda_j, \text{upper} + \lambda_j]\]

and minimize the mean interval length with risk control

\[\bm{\lambda} = \arg\min~\sum_{j \in [d]} \lambda_j~\quad\text{s.t. risk is controlled}\]

THE CONSTRAINT SET IS NOT CONVEX

\[\downarrow\]

NEED FOR A CONVEX RELAXATION

\(K\)-RCPS

For any user-defined membership \(M \in \mathbb{R}^{d \times K}\) :

1. Solve

\[\tilde{\bm{\lambda}}_K = \arg\min~\sum_{k \in [K]}n_k\lambda_k~\quad\text{s.t. convex upper bound} \leq \epsilon\]

2. Choose

\[\hat{\beta} = \inf\{\beta \in \mathbb{R}:~\text{risk is controlled},~\forall M\tilde{\bm{\lambda}}_K + \beta'\mathbb{1},~\beta' \geq \beta\}\]

\[\downarrow\]

\[\hat{\bm{\lambda}}_K = M\tilde{\bm{\lambda}}_K + \hat{\beta}\mathbb{1}\]

\(K\)-RCPS

For any user-defined membership \(M \in \mathbb{R}^{d \times K}\) :

1. Solve

\[\tilde{\bm{\lambda}}_K = \arg\min~\sum_{k \in [K]}n_k\lambda_k~\quad\text{s.t. convex upper bound} \leq \epsilon\]

2. Choose

\[\hat{\beta} = \inf\{\beta \in \mathbb{R}:~\text{risk is controlled},~\forall M\tilde{\bm{\lambda}}_K + \beta'\mathbb{1},~\beta' \geq \beta\}\]

RCPS \((\lambda_1 = \lambda_2 = \lambda)\)

\(K\)-RCPS

gain

\(K\)-RCPS

\(K\)-RCPS

Mean interval length

\[\text{RCPS}~\quad~\text{    }~0.1614 \pm 0.0020\]

\[K\text{-RCPS}~\quad~0.1391 \pm 0.0025\]

Thank you for your attention!

Jacopo Teneggi

Matt Tivnan

Web Stayman

Jeremias Sulam

Preprint:

GitHub repo:

CISS

By Jacopo Teneggi