Juan Carlos Ponce Campuzano
Independent Mathematics Educator
* One must consider what quadrant the point is in when computing θ from this identity.
x=1 and y=2.
r2=(1)2+(2)2
r2=5
r=5.
Then
r2=x2+y2
Since tanθ=y/x,
tanθ=12
⇒θ=arctan(2).
Therefore
(1,2)=(5;arctan(2))
r=4 and θ=4π.
x=rcos(θ)
Then
x=4cos(4π)
x=22,
y=rsin(θ)
and
y=4sin(4π)
y=22.
Therefore
(4;4π)=(22,22)
n = 50
k = 2.5
m = 3
GeoGebra code
n = 50
k = 2.5
m = 3
t = Slider(0, 2*pi, 0.01)
GeoGebra code
n = 50
k = 2.5
m = 3
t = Slider(0, 2*pi, 0.01)
c = Curve((1/(cos(m*θ/2)^n + sin(m*θ/2)^n)^(1/(k*n)); θ), t, pi + t)
GeoGebra code
n = 50
k = 2.5
m = 3
t = Slider(0, 2*pi, 0.01)
c = Curve((1/(cos(m*θ/2)^n + sin(m*θ/2)^n)^(1/(k*n)); θ), t, pi + t)
GeoGebra code
n = 50
k = 2.5
m = 3
t = Slider(0, 2*pi, 0.01)
f(x) = cos(m*x/2)^n + sin(m*x/2)^n)^(1/(k*n))
GeoGebra code
n = 50
k = 2.5
m = 3
t = Slider(0, 2*pi, 0.01)
f(x) = cos(m*x/2)^n + sin(m*x/2)^n)^(1/(k*n))
c = Curve((1/f(θ); θ), t, pi + t)
GeoGebra code
n = 50
k = 2.5
m = 3
t = Slider(0, 2*pi, 0.01, 0.3, 200)
f(x) = (cos(m*x/2)^n+sin(m*x/2)^n)^(1/(k*n))
Sequence(Curve((j * 1/f(θ); θ), θ, j*t, pi + j*t), j, 1, 10)
Patreons:
David Arso Civil, bleh, Dennis Watson, Neil, Doug Kuhlmann, mirror, Newnome Beauton, Adam Parrott, Sophia Wood (Fractal Kitty), pmben, Abei, Edward Huff.
Patreons:
David Arso Civil, bleh, Dennis Watson, Neil, Doug Kuhlmann, mirror, Newnome Beauton, Adam Parrott, Sophia Wood (Fractal Kitty), pmben, Abei, Edward Huff.
Patreons:
David Arso Civil, bleh, Dennis Watson, Neil, Doug Kuhlmann, mirror, Newnome Beauton, Adam Parrott, Sophia Wood (Fractal Kitty), pmben, Abei, Edward Huff.
Patreons:
David Arso Civil, bleh, Dennis Watson, Neil, Doug Kuhlmann, mirror, Newnome Beauton, Adam Parrott, Sophia Wood (Fractal Kitty), pmben, Abei, Edward Huff.
Patreons:
David Arso Civil, bleh, Dennis Watson, Neil, Doug Kuhlmann, mirror, Newnome Beauton, Adam Parrott, Sophia Wood (Fractal Kitty), pmben, Abei, Edward Huff.
By Juan Carlos Ponce Campuzano