Hexagonal

Curves

\text{A} = (x, y)

Cartesian Coordinate System

Polar Coordinate System

\text{A} = (x, y)
\text{A} = (r; \theta)

Cartesian Coordinate System

\text{A} = (x, y)
\text{A} = (r; \theta)
\begin{array}{rcl} x & = & r\cos(\theta)\\ \\ y & = & r\sin(\theta)\\ \\ r^2 & = & x^2+y^2 \\ \\ \tan\theta^* &=& \dfrac{y}{x} \end{array}

* One must consider what quadrant the point is in when computing \(\theta\) from this identity.

Polar Coordinate System

Cartesian Coordinate System

\text{A} = (1,2)

\(x=1\,\) and \(\,y=2\).

\(r^2=(1)^2+(2)^2\)

\(r^2=5\)

\(r=\sqrt{5}.\)

Then

\(r^2=x^2+y^2\)

Since \(\tan\theta = y/x,\)

\(\tan\theta =\dfrac{2}{1}\)

\(\Rightarrow\theta =\arctan(2).\)

From cartesian to polar

\text{A} = (1,2)

From cartesian to polar

Therefore

\((1,2) = \left(\sqrt{5};\arctan(2)\right)\)

\(r=4\,\) and \(\,\theta=\dfrac{\pi}{4}\).

\(x = r\cos\left(\theta\right)\)

Then

\(x = 4\cos\left(\dfrac{\pi}{4}\right)\)

\(x = 2\sqrt{2},\)

\(y = r\sin\left(\theta\right)\)

and

\(y = 4\sin\left(\dfrac{\pi}{4}\right)\)

\(y = 2\sqrt{2}.\)

From polar to cartesian

\text{A} = \left(4;\dfrac{\pi}{4}\right)

From polar to cartesian

Therefore

\(\left(4;\dfrac{\pi}{4}\right) = \bigg(2\sqrt{2},2\sqrt{2}\bigg)\)

\text{A} = \left(4;\dfrac{\pi}{4}\right)

Equations in cartesian and polar coordinate systems

4x^2+9y^2=6^2
r = \dfrac{6}{\sqrt{5\sin^2(\theta)+4}}
\begin{array}{rcl} x & = & r\cos(\theta)\\ \\ y & = & r\sin(\theta)\\ \\ r^2 & = & x^2+y^2 \\ \\ \tan\theta^* &=& \dfrac{y}{x} \end{array}
r = \dfrac{6}{\sqrt{5\sin^2(\theta)+4}}
4x^2+9y^2=6^2

Equations in cartesian and polar coordinate systems

0\leq \theta \leq 2\pi
r=2,\,0\leq \theta \leq 2\pi
r=1+\cos(\theta),\,0\leq \theta \leq 2\pi
r=\cos(3\theta),\,0\leq \theta \leq 2\pi
r=\dfrac{\theta}{2\pi},\,0\leq \theta \leq 10\pi
r=\sqrt{\cos(2\theta)},\,0\leq \theta \leq 2\pi
r=1-\cos(\theta)\sin(3\theta),\,0\leq \theta \leq 2\pi
r=2\cos\left(\frac{4\theta}{7}\right),\,0\leq \theta \leq 15\pi
\text{Butterfly curve}
\text{Hexagonal curve}
n = 50
k = 2.5
m = 3

GeoGebra code

n = 50
k = 2.5
m = 3
t = Slider(0, 2*pi, 0.01)

GeoGebra code

n = 50
k = 2.5
m = 3
t = Slider(0, 2*pi, 0.01)
c = Curve((1/(cos(m*θ/2)^n + sin(m*θ/2)^n)^(1/(k*n)); θ), t, pi + t)

GeoGebra code

n = 50
k = 2.5
m = 3
t = Slider(0, 2*pi, 0.01)
c = Curve((1/(cos(m*θ/2)^n + sin(m*θ/2)^n)^(1/(k*n)); θ), t, pi + t)

GeoGebra code

n = 50
k = 2.5
m = 3
t = Slider(0, 2*pi, 0.01)
f(x) = cos(m*x/2)^n + sin(m*x/2)^n)^(1/(k*n))

GeoGebra code

n = 50
k = 2.5
m = 3
t = Slider(0, 2*pi, 0.01)
f(x) = cos(m*x/2)^n + sin(m*x/2)^n)^(1/(k*n))
c = Curve((1/f(θ); θ), t, pi + t)

GeoGebra code

n = 50
k = 2.5
m = 3
t = Slider(0, 2*pi, 0.01, 0.3, 200)
f(x) = (cos(m*x/2)^n+sin(m*x/2)^n)^(1/(k*n))
Sequence(Curve((j * 1/f(θ); θ), θ, j*t, pi + j*t), j, 1, 10)

Final GeoGebra code

Thanks for

watching!

Patreons:

David Arso Civil, bleh, Dennis Watson, Neil, Doug Kuhlmann, mirror, Newnome Beauton, Adam Parrott, Sophia Wood (Fractal Kitty), pmben, Abei, Edward Huff.

Thanks for

watching!

Patreons:

David Arso Civil, bleh, Dennis Watson, Neil, Doug Kuhlmann, mirror, Newnome Beauton, Adam Parrott, Sophia Wood (Fractal Kitty), pmben, Abei, Edward Huff.

Thanks for

watching!

Patreons:

David Arso Civil, bleh, Dennis Watson, Neil, Doug Kuhlmann, mirror, Newnome Beauton, Adam Parrott, Sophia Wood (Fractal Kitty), pmben, Abei, Edward Huff.

Thanks for

watching!

Patreons:

David Arso Civil, bleh, Dennis Watson, Neil, Doug Kuhlmann, mirror, Newnome Beauton, Adam Parrott, Sophia Wood (Fractal Kitty), pmben, Abei, Edward Huff.

Thanks for

watching!

Patreons:

David Arso Civil, bleh, Dennis Watson, Neil, Doug Kuhlmann, mirror, Newnome Beauton, Adam Parrott, Sophia Wood (Fractal Kitty), pmben, Abei, Edward Huff.

Hexagonal curves

By Juan Carlos Ponce Campuzano

Hexagonal curves

Hexagonal curves: https://youtu.be/VtSANJhQ7IY

  • 189