Taylor series in C\mathbb C

f(z)=n=0an(zz0)n,    (zz0<R)f(z)=\displaystyle\sum_{n=0}^{\infty} a_n(z-z_0)^n,\;\; (|z-z_0|<R)
f(z)=\displaystyle\sum_{n=0}^{\infty} a_n(z-z_0)^n,\;\; (|z-z_0|<R)
an=f(n)(z0)n!,    (n=0,1,2,)a_n=\frac{f^{(n)}(z_0)}{n!},\;\; (n=0,1,2,\ldots)
a_n=\frac{f^{(n)}(z_0)}{n!},\;\; (n=0,1,2,\ldots)
Taylor series in C f ( z ) = ∑ n = 0 ∞ a n ( z − z 0 ) n , ( ∣ z − z 0 ∣ < R ) f(z)=\displaystyle\sum_{n=0}^{\infty} a_n(z-z_0)^n,\;\; (|z-z_0|<R) a n = f ( n ) ( z 0 ) n ! , ( n = 0 , 1 , 2 , … ) a_n=\frac{f^{(n)}(z_0)}{n!},\;\; (n=0,1,2,\ldots)

Lecture MATH3401

By Juan Carlos Ponce Campuzano

Lecture MATH3401

Geometric representation of series

  • 1,103