Klas Modin PRO
Mathematician at Chalmers University of Technology and the University of Gothenburg
Boris Khesin
University of Toronto
Gerard Misiolek
University of Notre Dame
Recent survey:
Geometric hydrodynamics and infinite-dimensional Newton’s equations, BAMS, 2021
Geometric hydrodynamics
(Arnold, 1966)
Optimal transport
Probability theory
Shape analysis
Information geometry
Quantum mechanics
Lagrangian coordinates
\(\varphi(t)\) geodesic on \(\mathrm{Diff}_\mu(M)\)
\[\nabla_{\dot\varphi}\dot\varphi = -\nabla p\circ\varphi\]
Eulerian coordinates
\(v(t)=\dot\varphi(t)\circ\varphi(t)^{-1}\) fulfills Euler's equations
\[\dot v + \nabla_v v = -\nabla p\]
Geometric hydrodynamics
(Arnold, 1966)
Optimal transport
Probability theory
Shape analysis
Information geometry
Quantum mechanics
Aim: extend Arnold's framework
Ingredients:
\(\mathrm{Diff}_\mu(M)\) symmetry:
Moser 1965:
Principal bundle
\(L^2\) metric on \(\mathrm{Diff}(M)\)
Induces Otto metric
Smooth probability densities
Induced potential function
On \(\mathrm{Diff}(M)\)
On \(\mathfrak{X}^*(M)\times\mathrm{Dens}(M)\)
On \(T^*\mathrm{Dens}(M)\)
On \(\mathrm{Diff}(M)\)
On \(\mathfrak{X}^*(M)\times\mathrm{Dens}(M)\)
On \(T^*\mathrm{Dens}(M)\)
On \(\mathrm{Diff}(M)\)
On \(\mathfrak{X}^*(M)\times\mathrm{Dens}(M)\)
On \(T^*\mathrm{Dens}(M)\)
Wasserstein-Otto
metric
Fisher-Rao
metric
Using Madelung
transform
Lagrangian
\(\Rightarrow\) Burgers equation, horizontal solutions = OMT
Lagrangian
\(\Rightarrow\) horizontal solutions = Schrödinger equation
Fisher functional
Lagrangian
\(\Rightarrow\) horizontal solutions = double Heat flows
\(\hbar=\pm i\epsilon\)
Schrödinger bridge ( = entropic regularization of OMT)
By Klas Modin
Presentation given at the 5th Conference on Geometric Science of Information (GSI'21), Paris, Sorbonne University, 21-23 July 2021
Mathematician at Chalmers University of Technology and the University of Gothenburg