Klas Modin PRO
Mathematician at Chalmers University of Technology and the University of Gothenburg
Invariant Riemannian metric on E
⇒ π Riemannian submersion
Invariant Riemannian metric on E
⇒ π Riemannian submersion
left co-sets [g]=g⋅H
Semi-invariant Riemannian metric on G
⇒ π Riemannian submersion
left co-sets [g]=g⋅Gb0
Semi-invariant Riemannian metric on G
⇒ π Riemannian submersion
left co-sets [g]=g⋅Gb0
Semi-invariant Riemannian metric on G
⇒ π Riemannian submersion
left co-sets [g]=g⋅Gb0
Semi-invariant Riemannian metric on G
⇒ π Riemannian submersion
left co-sets [g]=g⋅Gb0
Semi-invariant Riemannian metric on G
⇒ π Riemannian submersion
left co-sets [g]=g⋅Gb0
Semi-invariant Riemannian metric on G
⇒ π Riemannian submersion
left co-sets [g]=g⋅Gb0
Semi-invariant Riemannian metric on G
⇒ π Riemannian submersion
left co-sets [g]=g⋅Gb0
Semi-invariant Riemannian metric on G
⇒ π Riemannian submersion
left co-sets [g]=g⋅Gb0
Semi-invariant Riemannian metric on G
⇒ π Riemannian submersion
polar cone
Monge problem, L2 version
Monge problem, L2 version
Riemannian metric
Induced metric
[Benamou & Brenier (2000), Otto (2001)]
Invariance: η∈Diffμ0(M)
Geodesic equation:
Easy to prove:
Polar cone K is isomorphic to strictly convex smooth functions via ϕ↦∇ϕ
Hard to prove:
Polar cone K a section of principal bundle
Geodesic equation:
Easy to prove:
Polar cone K is isomorphic to strictly convex smooth functions via ϕ↦∇ϕ
Hard to prove:
Polar cone K a section of principal bundle
Brenier's decomposition of transport maps
Geodesic curve:
In particular:
Geodesic curve:
In particular:
Geodesic curve:
In particular:
Trivial observation: φ0(x)=A0x, φ1(x)=A1x linear diffeomorphisms ⇒ geodesic consists of linear diffeomorphisms
Consequence: GL(n) is totally geodesic subgroup of Diff(Rn)
Corresponding subspace of densities (statistical submanifold): multivariate Gaussians with zero mean
Monge-Ampere equation:
Factorization theorem:
Vertical gradient flow:
Vertical gradient flow:
Vertical gradient flow:
Horizontal gradient (heat) flow:
Relative entropy
(Kullback-Leibler)
Horizontal gradient (heat) flow:
Relative entropy
(Kullback-Leibler)
Horizontal gradient (heat) flow:
Lifted gradient flow on K for
Horizontal gradient (heat) flow:
Lifted gradient flow on K for
Hessian of F(P) strictly positive on K ⇒ unique limit!
Horizontal gradient (heat) flow:
Lifted gradient flow on K for
Hessian of F(P) strictly positive on K ⇒ unique limit!
Horizontal gradient (heat) flow:
Lifted gradient flow on K for
Hessian of F(P) strictly positive on K ⇒ unique limit!
Horizontal gradient (heat) flow:
Lifted gradient flow on K for
Hessian of F(P) strictly positive on K ⇒ unique limit!
Wasserstein
Fisher-Rao
Dependent on Riemannian structure of M
Independent of Riemannian structure of M⇒Diff(M)-invariance
HN(W) relative entropy functional
Functional F(Q)=HN(Q⊤W1Q) on O(n)
Relative entropy
Wasserstein-Otto metric
⇒ Riemannian gradient flow ρ˙=−∇GF(ρ)
Take F(ρ)=∫Mlog(ρ)ρ⇒δF=log(ρ)+1
same potential, different Riemannian metrics:
IPM: L2 on velocity (H1 on stream function)
TODA: H−1 on velocity (L2 on stream function)
gradients flows on Diffμ(S2)
gravity
low density
(light particles)
high density
(heavy particles)
By Klas Modin
Tutorial talk given 2023-11 in Banff.
Mathematician at Chalmers University of Technology and the University of Gothenburg