Lecture:

Quantum

simulation

Marek Gluza

NTU Singapore

slides.com/marekgluza

|\psi(t)\rangle = e^{-it \hat H}|\psi(0)\rangle

How to compute it on a laptop?

How to compute it on a quantum computer?

Hamiltonian simulation

|\psi(t)\rangle = e^{-it \hat H}|\psi(0)\rangle

How to compute it on a laptop?

For qubits, your laptop can do ~13 spins at finite temperature and ~25 spins for a pure state (use sparsity)

\begin{pmatrix}1\\0\end{pmatrix}\otimes \begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}1\\0\\0\\0\end{pmatrix}

At the end of the day:

Workarounds:

Hamiltonian simulation

|\psi(t)\rangle = e^{-it \hat H}|\psi(0)\rangle

How to compute it on a quantum computer?

Use quantum algorithms 'Hamiltonian simulation'

Trotter-Suzuki

Linear combination of unitaries

Qubitization

Randomized compiler

Hamiltonian simulation

Truncated series

P: Runs easily

BPP: Often runs easily

BQP: Often quantums easily

NP: Optimizes easily

QMA

P: Runs easily

BPP: Often runs easily

BQP: Often quantums easily

NP: Optimizes easily

Trotter-Suzuki decomposition

\hat H_\text{TFIM} = \sum_{i=1}^{L-1}X_iX_{i+1}+\sum_{i=1}^L Z_i \equiv \hat H_X +\hat H_Z
|\psi(t)\rangle = e^{-it \hat H_\text{TFIM}}{|0\rangle}^{\otimes L}
|\psi(t)\rangle = \left(e^{-i\frac tN \hat H_X}e^{-i\frac tN \hat H_Z}\right)^N{|0\rangle}^{\otimes L} + \hat E{|0\rangle}^{\otimes L}

Trotter-Suzuki decomposition

\|\hat E\| = \|e^{-it(\hat H_X +\hat H_Z)} - \left(e^{-i\frac tN \hat H_X}e^{-i\frac tN \hat H_Z}\right)^N\|
\le \frac{t^2}N\|[\hat H_X,\hat H_Z]\|

Why does it work?

BCH formula

e^{-it( \hat H_X +\hat H_Z)}=e^{-it\hat H_X }e^{-it\hat H_Z}e^{-i\frac {t^2}2[\hat H_X ,\hat H_Z]}\ldots
\|\mathbb 1 - e^{-i\frac {t^2}2[\hat H_X ,\hat H_Z]}\| \le \frac {t^2}2 \|[ \hat H_X ,\hat H_Z]\|

Conclusion: For short evolution time we're happy

How to implement Trotter-Suzuki?

e^{-it\hat H_X}=\prod_{i=1}^{L-1}e^{-it X_iX_{i+1} }
g_X(i) = e^{-itX_i X_{i+1}}
g_Z(i) = e^{-itZ_i }

Use Solovay-Kitaev algorithm to compile these gates but usually they are the primitive gates

(e^{-i\frac tN \hat H_X}e^{-i\frac tN \hat H_Z})^N{|0\rangle}^{\otimes L}

0

0

0

0

Hamiltonian simulation

0

0

0

0

0

0

0

0

C

Most sophisticated theoretical methods use

controlled-unitary operations

Exercise: Local error bound

Q_x = e^{i(1-x)A}e^{i(1-x)B}e^{ix(A+B)}
Q_1 = e^{i(A+B)}
Q_0 = e^{i A}e^{i B}
\partial_x Q_x = e^{i(1-x)A}\left(-A-B+ A_B+B\right)e^{i(1-x)B} e^{ix(A+B)}
A_B = e^{i(1-x)B}A e^{-i(1-x)B} = A + i e^{i\xi_x B}[A,B] e^{-i\xi_x B}
\|Q_0-Q_1\| =\| \int_0^1 dx \partial_x Q_x\| = \|[A,B]\|

Exercise: Non-commutative identity

X^m - Y^m = \sum_{j=0}^{m-1}X^{m-1-j}(X-Y)Y^j
\le \sum_{j=0}^{N-1}\|e^{-i (N-1-j)\frac tN \hat H_X}(e^{-i\frac tN \hat H_X}-e^{-i\frac tN \hat H_Z})e^{-ij\frac tN \hat H_Z}\|
\|e^{-it(\hat H_X +\hat H_Z)} - \left(e^{-i\frac tN \hat H_X}e^{-i\frac tN \hat H_Z}\right)^N\|
\le \sum_{j=0}^{N-1}\|e^{-i \frac tN \hat H_X}-e^{-i\frac tN \hat H_Z}\| \le \frac{t^2}N \|[H_X,H_Z]\|

cf.:

x^m -y ^m = (x-y)\sum_{j=0}^{m-1}x^{m-1-j}y^j

Application to physics:

Key idea for post-Trotter methods

C(U,V) = |0\rangle\langle 0| \otimes U + |1\rangle\langle 1| \otimes V

Step 1: Show that it's unitary

C(U,V) \, C(U,V)^\dagger = |0\rangle\langle 0| \otimes UU^\dagger + |1\rangle\langle 1| \otimes V V^\dagger = \mathbb 1

Key idea for post-Trotter methods

C(U,V) = |0\rangle\langle 0| \otimes U + |1\rangle\langle 1| \otimes V

Step 2: Apply to flag qubit in superposition

C(U,V) (|0\rangle + |1\rangle) \otimes |\psi\rangle = |0\rangle \otimes U |\psi\rangle + |1\rangle \otimes V |\psi\rangle

Key idea for post-Trotter methods

C(U,V) = |0\rangle\langle 0| \otimes U + |1\rangle\langle 1| \otimes V

Step 3: Consider what happens if applied to superposition:

(R_x(\theta)\otimes 1)C(U,V) |+\rangle \otimes |\psi\rangle =
R_x(\theta) |0\rangle = c |0\rangle+ s |1\rangle
R_x(\theta) |1\rangle = c |1\rangle -s |0\rangle
|0\rangle \otimes (cU -s V) |\psi\rangle + |1\rangle \otimes (cV +sU) |\psi\rangle

Key idea for post-Trotter methods

C(U,V) = |0\rangle\langle 0| \otimes U + |1\rangle\langle 1| \otimes V

Step 4: Assume flag is measured with outcome 1 and discard it

(P_+\otimes 1)(R_x(\theta)\otimes 1)C(U,V) |+\rangle \otimes |\psi\rangle \propto (cU+s V) |\psi\rangle
R_x(\theta) |0\rangle = c |0\rangle+ s |1\rangle
R_x(\theta) |1\rangle = c |1\rangle -s |0\rangle

Conclusion: We can (probabilistically) apply (normalized) sums of unitary operators

Key idea for reliable post-Trotter methods

R = 1 - 2|\phi\rangle\langle \phi|

Grover reflector

Step 1: Show that it's unitary

...

Key idea for reliable post-Trotter methods

R = 1 - 2|\phi\rangle\langle \phi|

Grover reflector

Step 2: Consider applying it to a state overlapping with it

R(|\phi\rangle + |\phi^\perp\rangle) \propto - |\phi\rangle+ |\phi^\perp\rangle

Key idea for reliable post-Trotter methods

R = 1 - 2|\phi\rangle\langle \phi|

Grover reflector

Step 3: Reflect around the linear combination of unitaries

This is also called oblivious amplitude amplification, and the crux is in making this efficiently and obliviously i.e. without knowing or destroying the reflector state

R_{c,s} = Q(1-2|\phi\rangle\langle \phi|)Q^\dagger

Gaussian quantum simulators

How?

Ultra-cold 1d gases

Inside: atoms

Outside:  wavepackets

hydrodynamics

 

Energy of phonons

E
E
E
E
\hat H_\text{TLL} = \int \text{d}z\left[ \frac{\hbar^2n_{GP}}{2m}\partial_z\hat\varphi^2+g\delta\hat\varrho^2\right]
\delta\varrho
\partial_z\varphi
\partial_z\varphi
\ll
\delta\varrho
\ll

Tomonaga-Luttinger liquid

Quantum field refrigerators in the TLL model:

System

Piston

Bath

Bath with excitations

System cooled down

 Breaking of the Huygens-Fresnel principle

 in the inhomogenous TLL model:

Why?

Why develop continuous field

quantum simulators?

  • Representation theory: Quantum information?
  • Continuum limits: BQP and QMA or more?
  • Are nanowires computationally hard to simulate?

What do we know is difficult?

SM

Fundamental

Universal

Effective

Why develop continuous field

quantum simulators?

  • Representation theory: Quantum information?
  • Continuum limits: BQP and QMA or more?
  • Are nanowires computationally hard to simulate?

What do we know is difficult?

SM

Fundamental

Universal

Effective

Non-thermal

steady states

Sine-Gordon

thermal states

Atomtronics

Generalized hydrodynamics

Recurrences

Some highlights:

Interferometry measures velocities

van Nieuwkerk, Schmiedmayer, Essler, arXiv:1806.02626

Schumm, Schmiedmayer, Kruger, et al., arXiv:quant-ph/0507047

\partial_z\hat \varphi(z) \approx\frac{\hat \varphi(z)-\hat \varphi(z+\Delta z)}{\Delta z}
\partial_z\hat \varphi(z) \approx\frac{\Delta\hat\varphi(z)}{\Delta z}
\Delta z

Tomography

Tomography for phonons

\hat H_\text{TLL} = \int \text{d}z\left[ \frac{\hbar^2n_{GP}}{2m}\partial_z\hat\varphi^2+g\delta\hat\varrho^2\right]
\hat H_\text{TLL} = \sum_{k>0} \frac {\hbar \omega_k}2 (\phi_k^2+\delta\hat\rho_k^2) + g\hat\rho_0^2
\langle\hat \phi_k^2(t)\rangle= \cos^2(\omega_k t) \langle \phi_k^2(0)\rangle \\ \quad\quad\quad\quad\quad+\sin^2(\omega_k t) \langle \delta\hat \rho_k^2(0)\rangle
\delta \hat\rho
\langle\hat \phi^2(t)\rangle
\langle\delta\hat \rho^2(0)\rangle =0?
\langle \hat \phi^2(0)\rangle
\hat \phi

Tomography for phonons

\hat H_\text{TLL} = \int \text{d}z\left[ \frac{\hbar^2n_{GP}}{2m}\partial_z\hat\varphi^2+g\delta\hat\varrho^2\right]
\hat H_\text{TLL} = \sum_{k>0} \frac {\hbar \omega_k}2 (\phi_k^2+\delta\hat\rho_k^2) + g\hat\rho_0^2
\langle\hat \phi_k^2(t)\rangle= \cos^2(\omega_k t) \langle \phi_k^2(0)\rangle \\ \quad\quad\quad\quad\quad+\sin^2(\omega_k t) \langle \delta\hat \rho_k^2(0)\rangle
\delta \hat\rho
\langle\hat \phi^2(t)\rangle
\langle\delta\hat \rho^2(0)\rangle =0?
\langle \hat \phi^2(0)\rangle
\hat \phi

What are eigenmodes?

\hat H_\text{TLL} = \int \text{d}z\left[ \frac{\hbar^2n_{GP}}{2m}\partial_z\hat\varphi^2+g\delta\hat\varrho^2\right]
\hat H_\text{TLL} = \sum_{k>0} \frac {\hbar \omega_k}2 (\phi_k^2+\delta\hat\rho_k^2) + g\hat\rho_0^2
\hat \phi_k = \int_0^L dz \cos(\pi k z/L)\hat \varphi(z)
\int_0^L dz \cos(\pi k z/L)\cos(\pi k'z/L) = \delta_{k,k'}

Transmutation

\langle\hat \phi_k^2(t)\rangle= \cos^2(\omega_k t) \langle \hat\phi_k^2(0)\rangle +\sin^2(\omega_k t) \langle \delta\hat \rho_k^2(0)\rangle
\langle\hat \phi_k^2(t)\rangle= \langle \hat\phi_k^2(0)\rangle
\langle\hat \phi_k^2(t)\rangle= \langle \delta\hat \rho_k^2(0)\rangle
t=0:
t=\frac{\pi}{2\omega_k}:
\delta \hat\rho
\langle\hat \phi^2(t)\rangle
\langle\delta\hat \rho^2(0)\rangle =0?
\langle \hat \phi^2(0)\rangle
\hat \phi

Tomography

A_{1,2}= \sin^2(\omega_k t_1 )
A_{1,1}= \cos^2(\omega_k t_1)
\langle\hat \phi_k^2(t)\rangle= \cos^2(\omega_k t) \langle \hat\phi_k^2(0)\rangle+ \sin^2(\omega_k t) \langle \delta\hat \rho_k^2(0)\rangle
A_{3,2}= \sin^2(\omega_k t_3 )
A_{3,1}= \cos^2(\omega_k t_3)
A_{2,2}= \sin^2(\omega_k t_2 )
A_{2,1}= \cos^2(\omega_k t_2)
A \begin{pmatrix} \langle \hat\phi_k^2(0)\rangle \\\langle \delta\hat \rho_k^2(0)\rangle \end{pmatrix} =\begin{pmatrix} \langle \hat\phi_k^2(t_1)\rangle \\\langle \hat\phi_k^2(t_2)\rangle \\\langle \hat\phi_k^2(t_3)\rangle \end{pmatrix}
\|Aq - d\| = \text{min}

(This formalism: Tomography for many modes)

Tomography Klein-Gordon thermal state after quench

\hat H_\text{KG}=\hat H_\text{TLL}+J\int \mathrm{d}z \,n_{GP} \hat \varphi^2

Extracting physical properties

Extracting physical properties

Extracting physical properties

Tomography for optical lattices

Material science?

0

0

0

0

C

Diagonalization quantum algorithm

DSF of Rydberg arrays

Phonon tomography

Optical lattice tomography

\langle\hat \phi_k^2(t)\rangle= \cos^2(\omega_k t) \langle \phi_k^2(0)\rangle \\ \quad\quad\quad\quad\quad+\sin^2(\omega_k t) \langle \delta\hat \rho_k^2(0)\rangle
\delta \hat\rho
\langle\hat \phi^2(t)\rangle
\langle\delta\hat \rho^2(0)\rangle =0?
\langle \hat \phi^2(0)\rangle
\hat \phi

Ask me anytime:

 

[11,16]

[7, 14, 15]

0

0

0

0

C

Fidelity witnesses

Tomography optical lattices

Tomography phonons

Proving statistical mechanics

Quantum simulating DSF

Holography in tensor networks

PEPS contraction average #P-hard

Quantum field machine

MBL l-bits

(click links at slides.com/marekgluza

Tutorial: Quantum simulation

By Marek Gluza

Tutorial: Quantum simulation

  • 618