Transformers

淺介

What is Transformer

Origin

  • Attention is all you need

Why

  • RNN (seq2eq) 句子間有相依性
  • 翻譯時 decoder 需要前一個字的輸出
  • 對平行不有善

Proposed Solution

  • Transformer encoder/decoder
  • Self Attention

Transformer Architecture

  • Self Attention
  • Positionwise Feed Forward
  • Position encoding

Architecture (Cont.)

Attention

x_i \ \forall i \in [1, length] \newline h_i = f(x_i) \newline \alpha_{i} = score(y, h_i) \newline z = \sum_{i}^{length} \alpha_{i} h_i

Simple Self Attention

x_i \ \forall i \in [1, length] \newline h_i = f(x_i) \newline \alpha_{ij} = score(h_i, h_j) \newline y_i = \sum_{j}^{length} \alpha_{ij} h_j

Self Attention

(SA)

x_i \ \forall i \in [1, length] \newline q_i = f_1(x_i) \newline k_i = f_2(x_i) \newline v_i = f_3(x_i) \newline \alpha_{ij} = score(q_i, k_j) \newline y_i = \sum_{j}^{length} \alpha_{ij} v_j

Self Attention (Cont.)

Positionwise Feed Forward

(PWFFN)

x_i \ \forall i \in [1, length] \newline y_i = f(x_i) \newline where \ f \ is \ a \ \text{two layer MLP}

Position Encoding

  • SA & PWFFN 並沒有順序(位置)的概念
  • 透過而外得向量提供位置資訊
  • 可用 trained weight 也可用定值

Transformer en/decoder

  • 透過 transformer (TRF) 取代 seq2seq 中的 RNN 架構
  • TRF encoder 將 source sentence 轉成 sequence of latent variable (memory)
  • TRF decode 透過 target sentence 存取 memory

Transformer en/decoder (Cont.)

Benefit

  • 每一層的第 i 個輸出  h_i 不需要等 h_{i-1} 算完,直接透過 X 的 attention 決定,可以平行加速

Variant

Non-sequence data

  • Source: Image Transformer
  • 使用 TRF 在 image 上,取代 PixelCNN

Decoder-only TRF

  • Source: GENERATING WIKIPEDIA BY SUMMARIZING LONG SEQUENCES
  • TRF en/decoder 之間也是透過 attention 交換資訊,不需要分 encoder 或 decoder
  • Also known as: TRF encoder

Pre-LN TRF

  • Source: On Layer Normalization in the Transformer Architecture
  • 將原本在 SA 以及 PWFFN 之後的 LN 移到 layer 之前
  • 據證是會讓 TRF 內部的 gradient 更穩定,幫助收斂

Pre-LN TRF

TRF-XL

  • Source: Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context
  • 為解決 TRF 長度問題
  • 在 TRF 外再包一層 recurrent
  • 使用 related position encoding

TRF-XL (Cont.)

More variant

  • Attention scheme
  • position embedding design
  • ...

Pretrain TRF

Origin

  • Improving Language Understanding by Generative Pre-Training (GPT1)
  • 第一篇使用 pretrain TRF 的論文

GPT1

  • Pre-train Language Modeling
  • autoregressive model

GPT1 (Cont.)

Bert

  • Source: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
  • 為解決 GPT1 只有單向輸入的問題,將 Language Modeling 換成 Masked Language Modeling (MLM)
  • 提出 next sentence prediction task

Bert (Cont.)

GPT2

  • Source: Language Models are Unsupervised Multitask Learners
  • 將 GPT1 從 Post-LN TRF 換成 Pre-LN TRF 並使用更多資料以及更大的模型

XLNet

  • Source: XLNet: Generalized Autoregressive Pretraining for Language Understanding
  • 以 TRF-XL 作為基底
  • 為解決 GPT 單向而 Bert 輸入有 mask token 的問題
  • 同使用 MLM 但輸入只使用 subsequence

XLNet

ALBert

  • Source: ALBERT: A LITE BERT FOR SELF-SUPERVISED LEARNING OF LANGUAGE REPRESENTATIONS
  • 解決 Bert 模型過大問題,大量的 share weight
  • 提出 Sentence ordering prediction task,預測兩句先後順序

More pretrain arch.

  • Source: PALM: Pre-training an Autoencoding&Autoregressive Language Model for Context-conditioned Generation

Q&A

TRF

By Peter Cheng

TRF

  • 1,109