Super-efficiency of automatic differentiation for functions defined as a minimum

Pierre Ablin\(^1\), Gabriel Peyré\(^1\), Thomas Moreau\(^2\)

1: ENS and CNRS, PSL university     2: Inria and CEA

Context

Context: computing the gradient of a minimum

- Let \(\mathcal{L}(z, x)\) a smooth function where \(z\in \mathbb{R}^m\) and \(x\in\mathbb{R}^n\), and

 

$$\boxed{\ell(x) = \min_z \mathcal{L}(z, x)}$$

 

-  We want to compute \(\nabla \ell(x)\)

Examples:  min-min optimization 

              - Dictionary learning 

              - Alternate optimization

              - Frechet means

 max-min optimization 

              - Game theory

              - GANs

Technical assumptions

- \(\ell(x) = \min_z \mathcal{L}(z, x)\), we want to compute \(\nabla \ell(x)\)

 

We assume:

- For all \(x\), \(\mathcal{L}\) has a unique minimizer \(z^*(x)=\arg\min_z \mathcal{L}(z, x)\) 

$$\ell(x) = \mathcal{L}(z^*(x), x)$$

- \(x\to z^*(x) \) is differentiable

Consequence (Danskin):

\nabla \ell(x) = \frac{\partial}{\partial x} \left[\mathcal{L}(z^*(x), x)\right]
\nabla \ell(x) = \frac{\partial z^*}{\partial x} \nabla_1\mathcal{L}(z^*(x), x) + \nabla_2 \mathcal{L}(z^*(x), x)
\boxed{\nabla \ell(x) = \nabla_2 \mathcal{L}(z^*(x), x)}
\nabla_1 \mathcal{L}(z^*(x), x) = 0
\nabla \ell(x) = \frac{\partial z^*}{\partial x} \underbrace{\nabla_1\mathcal{L}(z^*(x), x)}_{=0} + \nabla_2 \mathcal{L}(z^*(x), x)

Approximate optimization

- \(\ell(x) = \min_z \mathcal{L}(z, x)\), we want to compute \(\nabla \ell(x)\)

 

-No closed-form: We assume that we only have access to a sequence \(z_t\) such that \(z_t \to z^*\)

Example:  \(z_t\) produced by gradient descent on \(\mathcal{L}\) 

              - \(z_0 = 0\)

              - \(z_{t+1} = z_t - \rho \nabla_1 \mathcal{L}(z_t, x)\)

- \(z_t\) depends on \(x\): \(z_t(x)\)

How can we approximate \(\nabla \ell(x)\) using \(z_t(x)\) ? At which speed ?

The analytic estimator

g^1_t(x) = \nabla_2 \mathcal{L}(z_t(x), x)

Very simple to compute: simply plug \(z_t\) in \(\nabla_2 \mathcal{L}\) !

\nabla \ell(x) = \nabla_2 \mathcal{L}(z^*(x), x)
z_t(x) \to z^*(x)

The automatic estimator

g^2_t(x) = \frac{\partial}{\partial x}\left[\mathcal{L}(z_t(x), x)\right]

\(g^2_t\) is computed by automatic differentiation:

\nabla \ell(x) = \nabla_2 \mathcal{L}(z^*(x), x)
z_t(x) \to z^*(x)
g^2_t(x) = \frac{\partial z_t}{\partial x} \underbrace{\nabla_1\mathcal{L}(z_t(x), x)}_{\neq 0} + \nabla_2 \mathcal{L}(z_t(x), x)

- Easy to code (e.g. in Python, use pytorch, tensorflow, autograd...)

- \(\sim\) as costly to compute as \(z_t\)

- Memory cost linear with # iterations 

The implicit estimator

\nabla \ell(x) = \nabla_2 \mathcal{L}(z^*(x), x)
z_t(x) \to z^*(x)

Implicit function theorem: 

\frac{\partial z^*(x)}{\partial x} = \mathcal{J}(z^*(x), x)
\mathcal{J}(z, x) = - \nabla_{21} \mathcal{L}(z, x)\left[\nabla_{11}\mathcal{L}(z, x)\right]^{-1}
g^3_t(x) = \mathcal{J}(z_t(x), x) \nabla_1\mathcal{L}(z_t(x), x) + \nabla_2 \mathcal{L}(z_t(x), x)

- Need to invert a linear system: might be too costly to compute

Three gradient estimators

\nabla \ell(x) = \nabla_2 \mathcal{L}(z^*(x), x)
z_t(x) \to z^*(x)

- Analytic:   \(g^1_t(x) = \nabla_2 \mathcal{L}(z_t(x), x)\)

- Automatic:   \(g^2_t(x) = \frac{\partial z_t}{\partial x} \nabla_1\mathcal{L}(z_t(x), x) + \nabla_2 \mathcal{L}(z_t(x), x)\)

- Implicit:   \(g^3_t(x) = \mathcal{J}(z_t(x), x) \nabla_1\mathcal{L}(z_t(x), x) + \nabla_2 \mathcal{L}(z_t(x), x)\)

These estimators are all "consistent":

If \(z_t(x)= z^*(x)\)

\boxed{g^1_t(x) = g^2_t(x) = g^3_t(x) = \nabla \ell(x)}

Convergence speed of the estimators

Toy example (regularized logistic regression)

  • \(D\) rectangular matrix
  • \(\mathcal{L}(z, x) = \sum_{i=1}^n\log\left(1 + \exp(-x_i[Dz]_i)\right) + \frac{\lambda}{2}\|z\|^2\)
  • \(z_t\) produced by gradient descent

Implicit estimator

g^1_t(x) = \nabla_2 \mathcal{L}(z_t(x), x)

If \(\nabla_2 \mathcal{L} \) is \(L\)-Lipschitz:

|g^1_t(x) - \nabla \ell(x)| \leq L |z_t(x) - z^*(x)|

- The implicit estimator converges at the same speed as \(z_t\)

Automatic estimator

g^2_t(x) = \frac{\partial z_t}{\partial x} \nabla_1\mathcal{L}(z_t(x), x) + \nabla_2 \mathcal{L}(z_t(x), x)

It is of the form \(g^2_t(x) = J \nabla_1 \mathcal{L}(z_t, x) + \nabla_2 \mathcal{L}(z_t, x)\),  \(J\) rectangular matrix

Taylor expansion around \(z^*\):

\nabla_1\mathcal{L}(z_t, x) = \underbrace{\nabla_1 \mathcal{L}(z^*, x)}_{=0} + \left[\nabla_{11}\mathcal{L}(z^*, x)\right](z_t - z^*) + \underbrace{R_{11}}_{O(|z_t-z^*|^2)}
\nabla_1\mathcal{L}(z_t, x) = \left[\nabla_{11}\mathcal{L}(z^*, x)\right](z_t - z^*) + R_{11}
\nabla_2\mathcal{L}(z_t, x) = \underbrace{\nabla_2 \mathcal{L}(z^*, x)}_{\nabla\ell(x)} + \left[\nabla_{21}\mathcal{L}(z^*, x)\right](z_t - z^*) + \underbrace{R_{21}}_{O(|z_t-z^*|^2)}
\nabla_2\mathcal{L}(z_t, x) = \nabla\ell(x) + \left[\nabla_{21}\mathcal{L}(z^*, x)\right](z_t - z^*) + R_{21}
g^2_t(x) = \nabla \ell(x) + \underbrace{\left(J \nabla_{11}\mathcal{L}(z^*, x) + \nabla_{21}\mathcal{L}(z^*, x)\right)}_{R(J)}(z_t -z^*) + R_{21} + JR_{11}
g^2_t(x) = \nabla \ell(x) + R(J)(z_t - z^*) + O(|z_t-z^*|^2)

Automatic estimator

g^2_t(x) = \nabla \ell(x) + R(J)(z_t - z^*) + O(|z_t-z^*|^2), \text{ where } J = \frac{\partial z_t}{\partial x}

Implicit function theorem: \(R(J) = J\nabla_{11}\mathcal{L}(z^*, x) + \nabla_{21}\mathcal{L}(z^*, x)\) cancels when \(J = \frac{\partial z^*}{\partial x}\)

If \(\frac{\partial z_t}{\partial x} \to \frac{\partial z^*}{\partial x}\):

|g^2_t(x) -\nabla \ell(x) | = o(|z_t - z^*|)

Super-efficiency: Stricly faster than \(g^1_t\) !

Implicit estimator

|g^3_t(x) -\nabla \ell(x) | =O(|z_t - z^*|^2)

Twice as fast as \(g^1_t\) !

g^3_t(x) = \nabla \ell(x) + R(J)(z_t - z^*) + O(|z_t-z^*|^2)
\text{with } J = \mathcal{J}(z_t, x)= - \nabla_{21}\mathcal{L}(z_t, x)\left[\nabla_{11}\mathcal{L}(z_t, x)\right]^{-1}

If \(\mathcal{J}\) is Lipschitz w.r.t. \(z\):

Example

Gradient descent in the strongly convex case

Assumptions and reminders

-We assume that \(\mathcal{L}\) is \(\mu\)-strongly convex and \(L\)-smooth w.r.t. \(z\) for all \(x\).

- \(z_t\) produced by gradient descent with step \(1/L\):

\(z_{t+1} = z_t - \frac1L \nabla_1\mathcal{L}(z_t, x)\)

Linear convergence:

\boxed{|z_t - z^*| \leq \kappa^t |z_0 - z^*|}\enspace, \enspace \kappa = (1 - \frac{\mu}{L})

Convergence of the jacobian

\(z_{t+1} = z_t - \frac1L \nabla_1\mathcal{L}(z_t, x)\)

Let \(J_t =\frac{\partial z_t}{\partial x}\) :

\(J_{t+1} =J_t - \frac1L \left(J_t\nabla_{11}\mathcal{L}(z_t, x) + \nabla_{21}\mathcal{L}(z_t, x)\right) \)

[Gilbert, 1992]:

\boxed{\|J_t - \frac{\partial z^*} {\partial x}\| = O(t\kappa^{t})}

Convergence speed of the estimators

\|J_t - \frac{\partial z^*} {\partial x}\| = O(t\kappa^{t})
|z_t - z^*\| = O(\kappa^{t})
|g^1_t(x)- \nabla\ell(x)| = O(\kappa^{t})
|g^2_t(x)- \nabla\ell(x)| = O(t\kappa^{2t})
|g^3_t(x)- \nabla\ell(x)| = O(\kappa^{2t})

In the paper...

- Analysis in stochastic gradient descent case with step \(\propto t^{-\alpha}\):

\(|g^1_t - g^*| = O(t^{-\alpha})\),  \(|g^2_t - g^*| = O(t^{-2\alpha})\), \(|g^3_t - g^*| = O(t^{-2\alpha})\)

- Consequences on optimization: gradients are wrong, so what?

- Practical guidelines taking time and memory into account

Thanks for you attention !

icml presentation

By Pierre Ablin

icml presentation

  • 616