Approximate optimization on the orthogonal manifold

Pierre Ablin

Mokameeting

01/04/2020

Introduction to optimization on manifolds

followed by:

 

Ph.D.  from Inria, supervised by Jean-François Cardoso and Alexandre Gramfort

 

Subject: develop better Independent Component Analysis algorithms for neurosciences

 

Now: Post Doc with Gabriel

 

Interests: OT, optimization, automatic differentiation, manifolds

Who am I?

Outline:

What is a manifold, how to minimize a function defined on a manifold?

Approximate optimization on the orthogonal manifold

Manifold (informal definition)

\(\mathbb{R}^p\) equipped with canonical scalar product /  \( \ell_2 \)  norm \(|\cdot|\)

 

(Sub)-manifold \(\mathcal{M}\) of dimension \(k\) is a "smooth differentiable surface" in \(\mathbb{R}^p\).

 

At each point \(x \in \mathcal{M}\), the manifold looks like an Euclidean space of dimension \(k\), the tangent space \(T_x\).

 

 

Riemannian manifolds

\(T_x\) is endowed with a scalar product \(\langle \cdot, \cdot \rangle_x\).

\(\mathcal{M}\) is Riemannian when \(x\to \langle \cdot, \cdot, \rangle_x \)is smooth.​ 

Examples

- The sphere \(S^{p-1} = \{x \in \mathbb{R}^{p} \enspace | \|x\| = 1 \} \) is a \( p -1 \) dimensional manifold

 

- Any k dimensional vector space 

 

- The orthogonal matrix manifold  \(\mathcal{O}_p = \{M \in \mathbb{R}^{p \times p} \enspace |MM^{\top} =I_p\}\) is a \(p(p-1)/2\) dimensional manifold

Tangent space: example

- On the sphere \(S^{P-1} = \{x \in \mathbb{R}^{P} \enspace | \|x\| = 1 \} \):

 

 

T_x = \{\xi \in \mathbb{R}^P | \enspace \xi^{\top} x = 0 \}

- On the orthogonal manifold \( \mathcal{O}_P = \{M \in \mathbb{R}^{P \times P} | \enspace MM^{\top} = I_P\} \) :

 

 

T_W = \{X \in \mathbb{R}^{P \times P} | XW^{\top} + WX^{\top} = 0\} = \{AW| A\in \mathcal{A}_p\}

- On a vector space \(F\):

T_x = F

Curves

Consider a "curve on the manifold", linking two points \(x\) and \(x'\).

It is a (differentiable) function \(\gamma\) from \([0, 1]\) to \(\mathcal{M}\):

 

$$ \gamma(t) \in \mathcal{M} \enspace, $$

 

Such that \(\gamma(0) = x\) and \(\gamma(1) = x' \).

Its derivative at a point \(t\) is a vector in the tangent space at \(\gamma(t)\):

 

$$\gamma'(t) \in T_{\gamma(t)}$$

 

Geodesic: distances on manifolds

Let \( x, x' \in \mathcal{M} \). Let \(\gamma : [0, 1] \to \mathcal{M} \) be a curve linking \(x\) to \(x'\).

 

The length of \(\gamma \) is:

$$\text{length}(\gamma) = \int_{0}^1 \|\gamma'(t) \|_{\gamma(t)} dt \enspace ,$$

and the geodesic distance between  \(x\) and \(x'\) is the minimal length:

 

 

\(\gamma \) is called a geodesic.

d(x, x') = \min\text{length}(\gamma)

Example:

- On the sphere, equipped with constant metric,  \(d(x, x') = \arccos(x^{\top}x') \)

- On \(\mathcal{O}_p\) equipped with constant metric, \(d(W, W') = \|\log(W'W^{\top})\|_F\)

Geodesics depend on the metric

Exponential map

Let \(x\in \mathcal{M} \) and \(\xi \in T_x\). There is a unique geodesic \(\gamma \) such that \(\gamma(0) = x \) and \(\gamma'(0) = \xi \). The exponential map at \(x\) is a function from \(T_x\) to \(\mathcal{M}\):

 

$$\text{Exp}_x(\xi) = \gamma(1) \in \mathcal{M}$$

 

- Sometimes available in closed form

- Important property :

 

 

 

 

The exponential map preserves distances !

d(\text{Exp}_x(\xi), x) = \|\xi\|_x

Retractions

Retractions generalize the exponential: ways to move on the manifold.

 

\(R_x(\xi)\) is a retraction if for all \(x\in \mathcal{M}\), \(R_x\) maps \(T_x\) to \(\mathcal{M}\), and:

R_x(\xi) = x + \xi + o(|\xi|_2)

Examples on the orthogonal manifold \(\mathcal{O}_p\), \(T_W = \{AW | A\in \mathcal{A}_p\}\):

 

  • Exponential: \(R_W(AW) = \exp(A)W\)
  • Projection:    \(R_W(AW) = \mathcal{P}(W + AW), \enspace \mathcal{P}(M) = (MM^{\top})^{-\frac12}M\)
  • Cayley:           \(R_W(AW) = (I_p - \frac A2)^{-1}(I_p + \frac A2)W\)

Optimization on manifolds

Gradient

Optimization on a manifold \(\mathcal{M}\):

$$ \text{minimize} \enspace F(x) \enspace \text{s.t.} \enspace x \in \mathcal{M}\enspace, $$

The (Riemannian) gradient of \(F\) at \(x\) is \(\text{Grad}F(x) \in T_x\) such that :

F(R_x(\xi)) = F(x) + \langle \xi, \text{Grad}F(x)\rangle_x + o(|\xi|_2)

Does not depend on the choice of retraction !

 

Link with Euclidean gradient: if \(F\) is defined in an open set of \(\mathbb{R}^p\) around \(x\), differentiable at \(x\) and \(\langle\xi, \xi'\rangle_x = \langle S_x\xi, \xi'\rangle_2\):

 

 

\text{Grad}F(x) = S_x^{-1} \text{Proj}_{T_x}(\nabla F(x))

Riemannian gradient descent

$$ \text{minimize} \enspace F(x) \enspace \text{s.t.} \enspace x \in \mathcal{M}$$

 

$$x^{i+1} = R_{x^i}(-\rho \text{Grad}F(x^i))$$

 

Standard non-Convex optimization results [Absil et al., 2009, Optimization Algorithms on Matrix Manifolds]: asymptotic

 

E.g. with proper line-search:

 

 

\text{Grad}F(x^i) \to 0

Non-asymptotic analysis: geodesic convexity

$$ \text{minimize} \enspace F(x) \enspace \text{s.t.} \enspace x \in \mathcal{M}$$

 

\(\mathcal{X}\subset \mathcal{M}\) is a geodesically convex set if there is only one geodesic between any pair of points.

Examples: -Northern hemisphere excluding equator.

                -\(\mathcal{O}_p\) is not geodesically convex

               

\(F\) is geodesically convex on \(\mathcal{X}\) if for any geodesic \(\gamma\), \(F \circ \gamma\) is convex:

$$F(\gamma(t)) \leq (1- t) F(x) + t F(y),  x = \gamma(0), y= \gamma(1)$$

 

- Linear function \(\langle W, B\rangle\) is g-convex around \(W\) if \(\mathcal{P}_{S_p}(BW^{\top})\) is negative definite

Non-asymptotic analysis harder than in Euclidean case, but essentially same rates [Zhang & Sra, 2016, First-order Methods for Geodesically Convex Optimization]

Approximate optimization on the orthogonal manifold

Ongoing unfinished work !

 

Joint work with G. Peyré

Optimization over big orthogonal matrices?

Orthogonal matrices are used in deep learning as layers : 

$$x_{i+1}  =\sigma(Wx_i), \enspace W \in \mathcal{O}_p$$

 

Why?

 

-[Arjovsky, Shah & Bengio, 2016, Unitary evolution recurrent neural networks] avoid gradient explosion / vanishing: orthogonal matrices conserve norm, and \(\frac{\partial x_{i+1}}{\partial \theta} = \frac{\partial x_i}{\partial \theta} \text{diag}(\sigma')W^{\top}\)

 

-Acts as implicit regularization

Riemannian gradient on \(\mathcal{O}_p\)

Assuming constant metric \(\langle \cdot, \cdot \rangle_W = \langle \cdot, \cdot\rangle_2\)

\text{Grad}F(W) = \text{Proj}_{T_W}(\nabla F(W)) = P_{ \mathcal{A}_p}(\nabla F(W)W^{\top})W, P_{\mathcal{A}_p}(M) = \frac12(M - M^{\top})

Relative gradient: \(\phi(W) = P_{\mathcal{A}_p}(\nabla F(W)W^{\top})\in\mathcal{A}_p\), \(\text{Grad} F(W) = \phi(W) W\)

 

Example: Gradient descent with exponential retraction

 

$$W^{i+1} = \exp(-\rho \phi(W^i))W^i$$ 

Cheap to compute (only matrix products)

Retractions are costly

  • Exponential: \(R_W(AW) = {\color{red}\exp}(A)W\)
  • Projection:    \(R_W(AW) = {\color{red}\mathcal{P}}(W + AW)\),  \(\color{red} \mathcal{P}(M) = (MM^{\top})^{-\frac12}M\)
  • Cayley:           \(R_W(AW) = (I_p - \frac A2)^{\color{red}-1}(I_p + \frac A2)W\)

Not suited to GPU !

There is no polynomial retraction \(R_W(AW) = P(A, W)\)

Approximate optimization

At the first order, a retraction is \(R_W(AW) = (I_p + A)W\) Cheap

 

Idea:

$$W^{i+1} = (I_p - \rho\phi(W^i))W^i$$

 

\(\rightarrow\)The corresponding flow stays on the manifold 

$$\dot{W}(t) = -\phi(W(t))W(t)$$

 

but the discrete version can go away ...

 

Need to define \(\phi(W)\) for \(W  \notin\mathcal{O}_p\) : \(\phi(W) =P_{\mathcal{A}_p}(\nabla F(W)W^{\top})\) convenient

EASI algorithm

$$W^{i+1} = (I_p - \rho\phi(W^i))W^i$$

 

At stationnary point, \(\phi(W) = 0\): no guarantee that \(W\in\mathcal{O}_p\).


Add orthogonalization part [Cardoso & Laheld, 1996, Equivariant adaptive source separation]:

 

$$W^{i+1} = \left(I_p - \rho(\phi(W^i) + W^i(W^i)^{\top} - I_p)\right)W^i$$

 

At stationary point: \(\phi(W^i) + W^i(W^i)^{\top} - I_p = 0\)

 

Symmetric part: \(WW^{\top}=I_p\rightarrow W\) is orthogonal

Antisymmetric part: \(\phi(W)=0\rightarrow\) critical point of \(F\)

Landing flow

Corresponding flow:

 

$$\dot{W}= - \left(\phi(W) + WW^{\top} - I_p\right)W$$

 

Consider \(N(W) = \|WW^{\top} - I_p\|_F^2\).

 

$$\dot{W}= - \text{Grad}F(W) - \nabla N(W)$$

 

Not a gradient flow

Orthogonalization

 \(N(W) = \|WW^{\top} - I_p\|_F^2\)

Prop: Let \(\ell(t) = N(W(t))\). We have \(\ell(t) \leq K \exp(-4t)\) for some constant \(K\)

Proof:

 

 

 

 

\(\phi\) disappears ! Same convergence as Oja's flow [Oja, 1982, Simplified neuron model as a principal component analyzer]:

 

$$\dot{W}= -(WW^{\top} - I_p)W$$

\ell'(t) =-\langle \dot W, (WW^{\top} -I_p)W\rangle
=-\langle \phi(W) + WW^{\top} - I_p, (WW^{\top} -I_p)WW^{\top}\rangle
=-\|(WW^{\top} - I_p)W\|^2
\leq -4 \ell(t)\sqrt{1 - \ell(t)}

Function minimization (?)

 Let \(L(t) = F(W(t))\).

 

 

 

 

Second term can be controlled with \(\ell(t)\) using Cauchy-Schwarz + bounded gradient: -\(\langle WW^{\top} - I_p, \nabla F(W)W^{\top}\rangle \leq C\sqrt{\ell(t)}\)

First term: local Polyak-Lojasiewicz type inequality

L'(t) =-\langle \dot W, \nabla F(W)\rangle
=-\langle \phi(W) + WW^{\top} - I_p, \nabla F(W)W^{\top}\rangle
=-\|\phi\|^2 - \langle WW^{\top} - I_p, \nabla F(W)W^{\top}\rangle
\|\phi\|\geq 2\mu(F(W) - F^*)
L'(t)\leq -\mu L(t)^2 + K \exp(-2t)
\phi(W^* + E) = E H(W^*) + O(E^2)

Example: orthogonal Procrustes

\(X, Y \in \mathbb{R}^{n \times p} \) two datasets for \(n\) samples in dimension \(p\)

Orthogonal Procrustes:

$$\min \|X - YW\|_2^2,  \text{ s.t. } W \in \mathcal{O}_p$$

 

Closed form solution: \(W^* = \mathcal{P}(Y^{\top}X)\).

Landing flow for \(p=2\):

Example: orthogonal Procrustes

Discrete algorithm:

Ongoing directions

  • Proof of convergence of the flow under suitable conditions
  • How to chose the step size \(\rho\) ?
  • Experiments with neural networks
  • Acceleration possibility: quasi-Newton (\(\phi\) obtained with different metric), extrapolation
  • Extension to Stiefel manifold (\(W\in \mathbb{R}^{p \times {\color{red}d}}, \enspace WW^{\top} = I_p\))

Thanks for your attention !

Landing flow

By Pierre Ablin

Landing flow

  • 659