Santiago Casas
Cosmologist, Physicist, Data Scientist.
Santiago Casas
Postdoctoral Researcher
TTK, RWTH Aachen University
https://www.pablocarlosbudassi.com/2021/02/the-infographic-and-artistic-work-named.html
Planck 2018 CMB Temperature map (Commander) . wiki.cosmos.esa.int/planck-legacy-archive/index.php/CMB_maps
Illustris Simulation: www.nature.com/articles/nature13316
Concordance Cosmology:
https://www.cosmos.esa.int/web/planck/publications
68% Dark Energy
5% Baryons
27% Dark Matter
Textures created with DALL-E
Quantum Gravity?
O(100) orders of magnitude wrong
(Zeldovich 1967, Weinberg 1989, Martin 2012).
Composed of fine-tuning, hierarchy and coincidence
sub-problems, among others.
String Theory Landscape?
\(\phi\) ?
baryogenesis? \(_3^7\textrm{Li}\)?
H0 tension?
z_reio?
\(\Lambda\) ?
DM? PBH ?
doi: 10.1146/annurev.nucl.012809.104521
Age of the Universe
Temperature of the Universe
Planck 2018 results. VI. Cosmological parameters https://arxiv.org/abs/1807.06209
https://www.cosmos.esa.int/web/planck
* The Astrophysical Journal Letters, 934:L7 (52pp), 2022 July 20
\(H_0\) tension at 5\(\sigma\)
Freedman et al
SH0ES, Riess et al
Planck 2018, VI
Weak gravitational lensing
Galaxy Clustering
Orientation and ellipticities
Angles and redshifts
Tension with Planck in the
\(\sigma8\) - \(\Omega_m\) plane
Lange et al. arXiv: 2301.08692
Planck 2018, VI
DES DRY3 arxiv:2207.05766
Tension with Planck in the
\(\sigma8\) - \(\Omega_m\) plane
Lange et al. arXiv: 2301.08692
Planck 2018, VI
Outline of working fields
Ezquiaga, Zumalacárregui, Front. Astron. Space Sci., 2018
Gregory Horndeski
https://www.horndeskicontemporary.com/works
Costa Rica - Arenal Volcano
The "surviving Horndeski" Lagrangian:
In the EFT formalism, FLRW, linear and
(unitary gauge time \(\rightarrow \phi\) ) :
Parametrize free functions and check for stability in solutions
We have shown that certain classes of models will not be distinguishable from LCDM, even with future surveys, at 1\(\sigma\), while others will be measured with 10%-60% precision in their parameters
Frusciante, Peirone, SC, Lima, 1810.10521, Phys.Rev.D 99
Brax, SC, Desmond, Elder 2201.10817 Universe 8
Different types of screening:
Brax, SC, Desmond, Elder 2201.10817 Universe 8
Screening mechanisms can be characterized by the inequality:
For DE applications and under some assumptions:
Beyond \(\Lambda\)CDM the two linear gravitational potentials \(\Psi\) and \(\Phi\) are not equal to each other
We can describe general modifications of gravity (of the metric) at the linear perturbation level with 2 functions of scale (\(k\)) and time (\(a\))
Only two independent functions!
Another approach:
Planck 2018 results VI, arXiv:1807.06209
Planck 2015 results XIV, arXiv:1502.01590
Planck alone relatively unconstrained: 100-500% errors
Forecasts for Stage-IV : Euclid, DESI, SKA1, SKA2, only GC and WL
SC, Kunz, Martinelli, Pettorino, Phys.Dark Univ. 18 1703.01271
ESA class M2 space mission
Currently in Cannes, waiting to be shipped to Cape Canaveral
https://www.esa.int/Science_Exploration/Space_Science/Euclid
Sun-Earth Lagrange point 2, 1.5 million km from Earth
Launch vehicle: SpaceX Falcon 9
Euclid will measure the photometric 3x2pt function
Directly constrains MG function \(\Sigma\) through Weyl potential
BAO
Clustering
RSD
Spec-z
Euclid Collaboration, IST:Forecasts, arXiv: 1910.09273
Euclid will also measure the 2pt corr-func of spectroscopic galaxies in redshift space
Current data:
Image: https://www.cosmos.esa.int/web/planck/picture-gallery
Slides provided by: Guadalupe Cañas-Herrera
EUCLID PRELIMINARY
spectroscopic GC
photometric WL and GC
Awardees of the Euclid STAR Prize Team 2019
Euclid preparation: VII. Forecast validation for Euclid cosmological probes. arXiv:1910.09273
IST:F (forecasting taskforce), spent a few years refining, validating and comparing recipes, codes and forecasts
Euclid was commissioned to measure \(w_0, w_a , \gamma\)
EUCLID PRELIMINARY
21cm Intensity mapping
Image credit: Sunayana Bhargava
https://www.skao.int/
\(P^{\rm IM}(z,k) = \bar{T}_{IM}(z)^2 \rm{AP}(z) K_{\rm rsd}^2(z, \mu; b_{\rm HI}) \)
\(FoG(z,k,\mu_\theta) \\ \times P_{\delta\delta,dw}(z,k) \)
\( K_{\rm rsd}(z, \mu; b_{\rm HI}) = [b_{\rm HI}(z)^2+f(z)\mu^2] \)
\( b_{\rm HI}(z) = 0.3(1+z) + 0.6 \)
\( \bar{T}_{\mathrm{IM}}(z)= 189h \frac{(1+z)^2 H_0}{H(z)}\Omega_{HI}(z) \,\,{\rm mK} \)
\(\Omega_{HI} = 4(1+z)^{0.6} \times 10^{-4} \)
Carucci et al (2020) 2006.05996
Jolicoeur et al (2020) 2009.06197
\(P^{{\rm IM} \times \rm{g}}(z,k) = \bar{T}_{\rm IM}(z) {\rm AP} (z) r_{\rm IM,opt} K_{\rm rsd}(z, \mu; b_{\rm HI}) \)
\( \times K_{\rm rsd}(z, \mu; b_{\rm g}) FoG(z,k,\mu_\theta) P_{\delta\delta,dw}(z,k) \)
\( \times \exp[-\frac{1}{2} k^2 \mu^2 (\sigma_{\rm IM}(z)^2+\sigma_{\rm sp}(z)^2)] \)
SC, Carucci, Pettorino et al (2022) 2210.05705
Brightness temperature of 21cm emission line
Fraction of neutral hydrogen in the Universe
SC, Carucci, Pettorino et al (2022) 2210.05705
Euclid preparation: VII. Forecast validation for Euclid cosmological probes. arXiv:1910.09273
Bayes Theorem:
Probability of the model parameters given the data
Fisher Information Matrix:
Curvature (Hessian) of the Likelihood
Gaussian Likelihood in data space:
How do we actually perform those forecasts?
J. Schaffmeister
Euclid preparation: VII. Forecast validation for Euclid cosmological probes. arXiv:1910.09273
Fisher Matrix for a Gaussian likelihood of angular power spectra:
Parameter covariance:
Defines an ellipse:
Code: CosmicFish
S.Casas, M.Martinelli and M.Raveri
Soon to be released: New full pythonic version
https://github.com/CosmicFish/CosmicFish
Plots by: Sabarish Sabarish Venkataramani
Euclid Full:
GC spectro + 3x2pt photo
Code: CosmicFish
S.Casas and M.Martinelli
Planck 2018 results VI, arXiv:1807.06209
Froustey et al, arXiv:2008.01074, arXiv: 2110.11296
Suppression of the power spectrum, at first order depends on energy density ratios
Markov Chain Monte Carlo explorations -> inefficient, but standard way of exploring complicated likelihoods with non-Gaussian posteriors
MontePython MCMC vs. CosmicFish, for the 3x2pt photo probe of Euclid with neutrino mass and N_eff. Plot by: Sefa Pamuk
Slide by: Dennis Linde
Text
Angulo et al, 1406.4143
CLOE team, Oslo 2022
Cosmological Likelihood for Observables in Euclid
Agile: Recently -> 1000 tasks!
WL NonLin, 3x2pt Lin, 3x2pt NonLin
EUCLID PRELIMINARY
Euclid: SC et al (2022) in review
\(f_{R0}=(5.0^{+ 0.58}_{-0.52} \times 10^{-6})\)
f(R) Hu-Sawicki
scale-independent scalar-tensor theories
Euclid: Frusciante, Pace, Cardone, SC et al (2022) in review
SC, Rubio, Pauly et al (2017) 1712.04956
Higgs-Dilaton inflation: early-late Universe connection
Model-independent anisotropic-stress \(\eta\)
Amendola, Pinho, SC 1805.00027
SC, Amendola, Baldi, Pettorino et al 1508.07208
Coupled Quintessence: DM-DE
In collaboration with Johanna Schaffmeister and Sven Günther
jaxcosmo library https://github.com/DifferentiableUniverseInitiative
Campagne, Lanusse, Zuntz, SC
to appear in the arXiv in the next few days
Text
Merci!!
Credits: Tobias Liaudat, CosmoStat
Credits: Rodlophe Cledassou, CNES
CMB angular spectrum and matter power spectrum are both dependent on neutrino mass, N_eff and ordering
Vlasov-Poisson system is a set of diff.eqn. in which all matter-radiation species are coupled
Slides by: Dennis Linde
Text
Modification of the Einstein-Hilbert action
Induces changes in the gravitational potentials *
*for negligible matter anisotropic stress
Scale-dependent growth of matter perturbations
Small changes in lensing potential
Free parameter: \(f_{R0}\)
Hu, Sawicki (2007)
"Fifth-force" scale for cosmological densities
\(\lambda_C =32 \rm{Mpc}\sqrt{|f_{R0}|/10^{-4}}\)
Euclid: Casas et al (2022) in preparation
Text
Euclid: Casas et al (2022) in preparation
Codes used: for background and scale-dependent linear perturbations: MGCAMB and EFTCAMB
For non-linear power spectrum:
Winther et al (2019) fitting formula
By Santiago Casas
Cosmology Seminar