Santiago Casas
Cosmologist, Physicist, Data Scientist.
Santiago Casas,
Isabella Carucci, Valeria Pettorino,
Stefano Camera, Matteo Martinelli
arXiv:2210.05705 accepted in Phys. Dark Univ.
Cosmic Microwave Background
Planck 2018 CMB Temperature map (Commander) . wiki.cosmos.esa.int/planck-legacy-archive/index.php/CMB_maps
Large Scale Structure
Illustris Simulation: www.nature.com/articles/nature13316
Santiago Casas, 06.12.22
Concordance Cosmology:
Santiago Casas, 06.12.22
O(100) orders of magnitude wrong
(Zeldovich 1967, Weinberg 1989, Martin 2012).
Composed of naturalness and coincidence
sub-problems, among others.
Quantum Gravity?
Santiago Casas, 06.12.22
Planck, Clusters and Lensing tension on clustering amplitude \(\sigma_8\)
KiDS 1000 Cosmology, arXiv:2010:16416
L.Verde, et al 2019. arXiv:1907.10625
Santiago Casas, 06.12.22
Ezquiaga, Zumalacárregui, Front. Astron. Space Sci., 2018
Santiago Casas, 06.12.22
In \(\Lambda\)CDM the two linear gravitational potentials \(\Psi\) and \(\Phi\) are equal to each other
We can describe general modifications of gravity (of the metric) at the linear level with 2 functions of scale (\(k\)) and time (\(a\))
Only two independent functions
Santiago Casas, 06.12.22
Planck 2015 results XIV, arXiv:1502.01590
Planck 2018 results VI, arXiv:1807.06209
Casas et al (2017), arXiv:1703.01271
Forecasts for Stage-IV surveys in:
Santiago Casas, 06.12.22
Casas et al (2017), arXiv:1703.01271
Santiago Casas, 06.12.22
Casas et al (2017), arXiv:1703.01271
Santiago Casas, 06.12.22
Santiago Casas, 06.12.22
21cm Intensity Mapping
Image credit: Sunayana Bhargava
Santiago Casas, 02.11.21
Santiago Casas, 06.12.22
Santiago Casas, 06.12.22
Santiago Casas, 06.12.22
Image credit: Isabella Carucci
Continuum emission: Allows detection of position and shapes of galaxies.
Line emission of neutral Hydrogen (HI, 21cm):
Using redshifted HI line -> spectroscopic galaxy survey
2. Intensity Mapping: Large scale correlations in HI brightness temperature -> very good redshift resolution,
good probe of structures
Santiago Casas, 06.12.22
Image credit: Isabella Carucci
Continuum emission: Allows detection of position and shapes of galaxies.
Line emission of neutral Hydrogen (HI, 21cm):
Using redshifted HI line -> spectroscopic galaxy survey
2. Intensity Mapping: Large scale correlations in HI brightness temperature -> very good redshift resolution,
good probe of structures
Santiago Casas, 06.12.22
HI galaxies spectroscopic survey
SKA1 Redbook 2018, arXiv:1811.02743
SKA1 Medium Deep Band 2: \(5000 \, \rm{deg}^2\)
Santiago Casas, 06.12.22
BAO
Clustering
RSD
Spec-z
Euclid Collaboration, IST:Forecasts, arXiv: 1910.09273
Santiago Casas, 06.12.22
SKA1 Redbook 2018, arXiv:1811.02743
SKA1 Medium Deep Band 2: \(5000 \, \rm{deg}^2\)
Continuum galaxy survey
Santiago Casas, 06.12.22
*kindly provided by Stefano Camera
SKA1 Medium Deep Band 2: \(5000 \, \rm{deg}^2\)
Continuum galaxy survey
Santiago Casas, 06.12.22
Directly constrains MG function \(\Sigma\) through Weyl potential
Santiago Casas, 06.12.22
Euclid preparation: VII. Forecast validation for Euclid cosmological probes. arXiv:1910.09273
Santiago Casas, 06.12.22
SKA1 Medium Deep Band 1: \(20000 \,\rm{deg}^2\)
Santiago Casas, 06.12.22
\(P^{\rm IM}(z,k) = \bar{T}_{IM}(z)^2 \rm{AP}(z) K_{\rm rsd}^2(z, \mu; b_{\rm HI}) \)
\(FoG(z,k,\mu_\theta) \\ \times P_{\delta\delta,dw}(z,k) \)
\(\Omega_{HI} = 4(1+z)^{0.6} \times 10^{-4} \)
\( \bar{T}_{\mathrm{IM}}(z)= 189h \frac{(1+z)^2 H_0}{H(z)}\Omega_{HI}(z) \,\,{\rm mK} \)
Jolicoeur et al (2020) arXiv:2009.06197
Carucci et al (2020) arXiv:2006.05996
\( K_{\rm rsd}(z, \mu; b_{\rm HI}) = [b_{\rm HI}(z)^2+f(z)\mu^2] \)
\( b_{\rm HI}(z) = 0.3(1+z) + 0.6 \)
Santiago Casas, 06.12.22
\( b_{\rm g}(z) = \) fit to simulations for given galaxy sample
Jolicoeur et al (2020) arXiv:2009.06197
Wolz et al (2021) arXiv:2102.04946
\(\sigma_i(z) = \frac{c}{H(z)}(1+z) \delta_z\)
\(P^{{\rm IM} \times \rm{g}}(z,k) = \bar{T}_{\rm IM}(z) {\rm AP} (z) r_{\rm IM,opt} K_{\rm rsd}(z, \mu; b_{\rm HI}) \)
\( \times K_{\rm rsd}(z, \mu; b_{\rm g}) FoG(z,k,\mu_\theta) P_{\delta\delta,dw}(z,k) \)
\( \times \exp[-\frac{1}{2} k^2 \mu^2 (\sigma_{\rm IM}(z)^2+\sigma_{\rm sp}(z)^2)] \)
Santiago Casas, 06.12.22
Santiago Casas, 06.12.22
Number of dishes
Effective beam
\(\beta_{SD} = \exp[-\frac{k_\perp r(z)^2 \theta_b (z)^2}{8 \ln 2}] \)
\( \alpha_{SD} = \frac{1}{N_d} \)
Jolicoeur et al (2020) arXiv:2009.06197
Santiago Casas, 06.12.22
Euclid space satellite, now waiting in Cannes
Santiago Casas, 06.12.22
Specialized in Galaxy Clustering
Santiago Casas, 06.12.22
Specialized in Photometric Angular Probes: Lensing and Clustering
Santiago Casas, 06.12.22
Santiago Casas, 06.12.22
Santiago Casas, 06.12.22
Santiago Casas, 06.12.22
Santiago Casas, 06.12.22
DESI_E : high-z Emission Line Galaxies
DESI_B: low-z Bright Galaxy Sample
SKAO GCsp: low-z HI Galaxies
Santiago Casas, 06.12.22
Santiago Casas, 06.12.22
Santiago Casas, 06.12.22
Santiago Casas, 06.12.22
Text
Backup slide
Santiago Casas
SKA1:
GC+WL+XC (Continuum) +
IM (HI 21cm) + GCsp(HI)
vs
Euclid
(Gcsp+GCph+WL+XCph)
vs
Euclid
(Gcsp+GCph+WL+XCph)+SKA1 Pk-probes.
Unfortunately, the \(\mu\) constraints from Euclid alone dominate over the improvement that SKA1 "Pk-probes" add
PRELIMINARY
Backup slide
Testing at higher H0 value
Backup slide
Backup slide
Backup slide
Backup slide
By Santiago Casas
Constraining modified gravity with synergies between radio and optical cosmological surveys