Global Planning for Contact-Rich Manipulation via Local Smoothing of Quasi-dynamic Contact Models

Tao Pang*, H.J. Terry Suh*, Lujie Yang, Russ Tedrake

MIT CSAIL, Robot Locomotion Group

 

Published in T-RO 2023

ICRA 2024 Presentation

The Software Bottleneck in Robotics

A

B

Do not make contact

Make contact

Today's robots are not fully leveraging its hardware capabilities

Larger objects = Larger Robots?

Contact-Rich Manipulation Enables Same Hardware to do More Things

 

Case Study 1. Whole-body Manipulation

What is Contact-Rich Manipulation?

What is Contact-rich Manipulation?

Case Study 2. Dexterous Hands

OpenAI

What our paper is about

1. Why is RL succeeding where model-based methods struggle?

 

 

 

2. Can we do better by understanding?

What our paper is about

1. Why is RL succeeding where model-based methods struggle?

 

 

 

2. Can we do better by understanding?

  • RL Regularizes Landscapes using stochasticity 
  • Allows Monte-Carlo Abstraction of Contact Modes
  • Global optimization with stochasticity 

What our paper is about

1. Why is RL succeeding where model-based methods struggle?

 

 

 

2. Can we do better by understanding?

  • RL Regularizes Landscapes using stochasticity 
  • Allows Monte-Carlo Abstraction of Contact Modes
  • Global optimization with stochasticity 
  • interior-point smoothing of contact dynamics
  • Efficient gradient computation using sensitivity analysis
  • Use of RRT to perform fast online global planning

Toy Problem

Simplified Problem

\begin{aligned} \min_{u} \quad & \frac{1}{2}\|f^\mathrm{u}(q,u) - q^\mathrm{u}_{goal}\|^2 \end{aligned}

Given initial      and goal           ,

which action minimizes distance to the goal?

\begin{aligned} q \end{aligned}
\begin{aligned} q^\mathrm{u}_{goal} \end{aligned}
\begin{aligned} q^\mathrm{u} \end{aligned}
\begin{aligned} q^\mathrm{a} \end{aligned}
\begin{aligned} q^\mathrm{u}_{goal} \end{aligned}
\begin{aligned} u \end{aligned}

Toy Problem

Simplified Problem

Consider simple gradient descent,

\begin{aligned} u_0 \end{aligned}

Dynamics of the system

No Contact

Contact

The gradient is zero if there is no contact!

The gradient is zero if there is no contact!

\begin{aligned} q^\mathrm{u}_0 \end{aligned}
\begin{aligned} q^\mathrm{a}_0 \end{aligned}
\begin{aligned} q^\mathrm{u}_{goal} \end{aligned}
\begin{aligned} u \end{aligned}

Local gradient-based methods get stuck due to the flat / non-smooth landscapes

\begin{aligned} \min_{u} \quad & \frac{1}{2}\|f^\mathrm{u}(q,u) - q^\mathrm{u}_{goal}\|^2 \end{aligned}
\begin{aligned} u \leftarrow u - \eta \nabla_u \textstyle\frac{1}{2} \|f^\mathrm{u}(q,u) - q^\mathrm{u}_{goal}\|^2 \end{aligned}
\begin{aligned} u \leftarrow u - \eta \left[f^\mathrm{u}(q,u) - q^\mathrm{u}_{goal}\right]{\color{red} \nabla_u f^\mathrm{u}(q,u)} \end{aligned}
\begin{aligned} q^\mathrm{u}_{next}=f^\mathrm{u}(q,u) \end{aligned}

Previous Approaches to Tackling the Problem

[MDGBT 2017]

[HR 2016]

[CHHM 2022]

[AP 2022]

Contact

No Contact

\begin{aligned} u \end{aligned}

Cost

Mixed Integer Programming

Mode Enumeration

Active Set Approach

Why don't we search more globally for each contact mode?

In no-contact, run gradient descent.

In contact, run gradient descent.

Problems with Mode Enumeration

System

Number of Modes

\begin{aligned} N = 3^{\binom{20}{2}} \approx 4.5 \times 10^{90} \end{aligned}

The number of modes scales terribly with system complexity

\begin{aligned} N = 2 \end{aligned}
\begin{aligned} N = 3^{\binom{9}{2}} \end{aligned}

No Contact

Sticking Contact

Sliding Contact

Number of potential active contacts

How does RL power through these problems?

Reinforcement Learning fundamentally considers a stochastic objective

\begin{aligned} \min_{u} \quad & \frac{1}{2}\|f^\mathrm{u}(q,u) - q^\mathrm{u}_{goal}\|^2 \end{aligned}

Previous Formulations

\begin{aligned} \min_{u} \quad & \frac{1}{2}{\color{red} \mathbb{E}_{w\sim \rho}}\|f^\mathrm{u}(q,u {\color{red} + w}) - q^\mathrm{u}_{goal}\|^2 \end{aligned}

Reinforcement Learning

Contact

No Contact

Cost

\begin{aligned} u_0 \end{aligned}

How does RL power through these problems?

Previous Formulations

Reinforcement Learning

Contact

No Contact

Cost

\begin{aligned} u_0 \end{aligned}
\begin{aligned} \min_{u} \quad & \frac{1}{2}\|f^\mathrm{u}(q,u) - q^\mathrm{u}_{goal}\|^2 \end{aligned}
\begin{aligned} & \min_{u}\quad \frac{1}{2}{\color{red} \mathbb{E}_{w\sim \rho}}\|f^\mathrm{u}(q,u {\color{red} + w}) - q^\mathrm{u}_{goal}\|^2 \\ =& \min_{u}\quad \frac{1}{2} \mathbb{E}_{w\sim\rho}\left[{\color{blue} F}(u + w)\right] \end{aligned}

How does RL power through these problems?

\begin{aligned} \min_{u} \quad & \frac{1}{2}\|f^\mathrm{u}(q,u) - q^\mathrm{u}_{goal}\|^2 \end{aligned}

Previous Formulations

Reinforcement Learning

Contact

No Contact

Cost

\begin{aligned} u_0 \end{aligned}
\begin{aligned} & \min_{u}\quad \frac{1}{2}{\color{red} \mathbb{E}_{w\sim \rho}}\|f^\mathrm{u}(q,u {\color{red} + w}) - q^\mathrm{u}_{goal}\|^2 \\ =& \min_{u}\quad \frac{1}{2} \mathbb{E}_{w\sim\rho}\left[{\color{blue} F}(u + w)\right] \end{aligned}

Contact

No Contact

Averaged

\begin{aligned} u_0 \end{aligned}

Randomized smoothing

regularizes landscapes

Cost

How does RL power through these problems?

\begin{aligned} \min_{u} \quad & \frac{1}{2}\|f^\mathrm{u}(q,u) - q^\mathrm{u}_{goal}\|^2 \end{aligned}

Previous Formulations

Reinforcement Learning

Contact

No Contact

Cost

\begin{aligned} u_0 \end{aligned}
\begin{aligned} & \min_{u}\quad \frac{1}{2}{\color{red} \mathbb{E}_{w\sim \rho}}\|f^\mathrm{u}(q,u {\color{red} + w}) - q^\mathrm{u}_{goal}\|^2 \\ =& \min_{u}\quad \frac{1}{2} \mathbb{E}_{w\sim\rho}\left[{\color{blue} F}(u + w)\right] \end{aligned}

Contact

No Contact

Averaged

\begin{aligned} u_0 \end{aligned}

Randomized smoothing

regularizes landscapes

Cost

But leads to high variance,

low sample-efficiency.

\begin{aligned} q_{next}^\mathrm{u} = {\color{blue} \mathbb{E}_{w\sim \rho}}\left[f^\mathrm{u}(q,u + {\color{blue}w})\right] \end{aligned}
\begin{aligned} q_{next}^\mathrm{u} = f^\mathrm{u}(q,u) \end{aligned}

Non-smooth Contact Dynamics

Smooth Surrogate Dynamics

\begin{aligned} q^\mathrm{u}_1 \end{aligned}
\begin{aligned} u \end{aligned}

No Contact

Contact

\begin{aligned} u \end{aligned}
\begin{aligned} q^\mathrm{u}_1 \end{aligned}

Averaged

Dynamic Smoothing

What if we had smoothed dynamics instead of the overall cost?

Effects of Dynamic Smoothing

\begin{aligned} \min_{u} \quad & \frac{1}{2}{\color{red} \mathbb{E}_{w\sim \rho}}\|f^\mathrm{u}(q,u {\color{red} + w}) - q^\mathrm{u}_{goal}\|^2 \end{aligned}

Reinforcement Learning

Cost

Contact

No Contact

Averaged

\begin{aligned} u_0 \end{aligned}

Dynamic Smoothing

Averaged

Contact

No Contact

No Contact

\begin{aligned} \min_{u_0} \quad & \frac{1}{2}\|{\color{blue} \mathbb{E}_{w\sim \rho}}\left[f^\mathrm{u}(q,u {\color{blue} + w})\right] - q^\mathrm{u}_{goal}\|^2 \end{aligned}

Can still claim benefits of averaging multiple modes leading to better landscapes

Importantly, we know structure for these dynamics!

Can often acquire smoothed dynamics & gradients without Monte-Carlo.

\begin{aligned} q^\mathrm{a}_0 \end{aligned}
\begin{aligned} u \end{aligned}

Example: Box vs. wall

Commanded next position

Actual next position

Cannot penetrate into the wall

Implicit Time-stepping simulation

\begin{aligned} q^\mathrm{a}_1 \end{aligned}
\begin{aligned} q^\mathrm{a}_0 + u \end{aligned}

No Contact

Contact

Structured Smoothing: An Example

\begin{aligned} \min_{{\color{blue} q^\mathrm{a}_1}}& \quad \frac{1}{2}\|{\color{red} q^\mathrm{a}_0 + u_0} - {\color{blue} q^\mathrm{a}_1}\|^2 \\ \text{s.t.} &\quad {\color{blue} q^\mathrm{a}_1} \geq 0 \end{aligned}

Importantly, we know structure for these dynamics!

Can often acquire smoothed dynamics & gradients without Monte-Carlo.

\begin{aligned} q^\mathrm{a}_0 \end{aligned}
\begin{aligned} u \end{aligned}

Example: Box vs. wall

Implicit Time-stepping simulation

\begin{aligned} \min_{{\color{blue} q^\mathrm{a}_1}}& \quad \frac{1}{2}\|{\color{red} q^\mathrm{a}_0 + u_0} - {\color{blue} q^\mathrm{a}_1}\|^2 \\ \text{s.t.} &\quad {\color{blue} q^\mathrm{a}_1} \geq 0 \end{aligned}

Commanded next position

Actual next position

Cannot penetrate into the wall

Log-Barrier Relaxation

\begin{aligned} \min_{{\color{blue} q^\mathrm{a}_1}}& \quad \frac{1}{2}\|{\color{red} q^\mathrm{a}_0 + u_0} - {\color{blue} q^\mathrm{a}_1}\|^2 - \kappa^{-1}\log {\color{blue} q^\mathrm{a}_1} \end{aligned}

Structured Smoothing: An Example

Differentiating with Sensitivity Analysis

How do we obtain the gradients from an optimization problem?

\begin{aligned} \frac{\partial q^{\mathrm{a}\star}_1}{\partial u_0} \end{aligned}
\begin{aligned} \min_{{\color{blue} q^\mathrm{a}_1}}& \quad \frac{1}{2}\|{\color{red} q^\mathrm{a}_0 + u_0} - {\color{blue} q^\mathrm{a}_1}\|^2 - \kappa^{-1}\log {\color{blue} q^\mathrm{a}_1} \end{aligned}

Differentiating with Sensitivity Analysis

How do we obtain the gradients from an optimization problem?

\begin{aligned} \frac{\partial q^{\mathrm{a}\star}_1}{\partial u_0} \end{aligned}
\begin{aligned} q^\mathrm{a}_0 + u_0 - q^{\mathrm{a}\star}_1 - \kappa^{-1}\frac{1}{q^{\mathrm{a}\star}_1} = 0 \end{aligned}

Differentiate through the optimality conditions!

Stationarity Condition

Implicit Function Theorem

\begin{aligned} \left[1 + \kappa^{-1}\frac{1}{(q^{\mathrm{a}\star}_1)^2}\right]\frac{\partial q^{\mathrm{a}\star}}{\partial u_0} = 1 \end{aligned}

Differentiate by u

\begin{aligned} \min_{{\color{blue} q^\mathrm{a}_1}}& \quad \frac{1}{2}\|{\color{red} q^\mathrm{a}_0 + u_0} - {\color{blue} q^\mathrm{a}_1}\|^2 - \kappa^{-1}\log {\color{blue} q^\mathrm{a}_1} \end{aligned}

Quasi-dynamic Simulator

Quasidynamic Equations of Motion

\begin{aligned} \left(\frac{\varepsilon}{h}\mathbf{M}_u(q)\right) \delta q^\mathrm{u} & = h\tau^\mathrm{u} + \sum^{n_c}_{i=1}\left(\mathbf{J}_{\mathrm{u}_i}(q)\right)^\top \lambda_i \\ h\mathbf{K}_a\left(q^\mathrm{a} + \delta q^\mathrm{a} - u\right) & = h\tau^\mathrm{a} + \sum^{n_c}_{i=1} + \sum^{n_c}_{i=1}\left(\mathbf{J}_{\mathrm{u}_i}(q)]\right)^\top \lambda_i \\ \mathbf{J}_i\delta q + \begin{bmatrix} \phi_i \\ 0_2 \end{bmatrix} & \in \mathcal{K}^\star_i \\ \lambda_i & \in \mathcal{K}_i \\ v_i^\top \lambda_i & = 0 \end{aligned}

Object Dynamics

Impedance-Controlled Actuator Dynamics

Non-Penetration

Friction Cone Constraints

Conic Complementarity

Quasi-dynamic Simulator

Quasidynamic Equations of Motion

\begin{aligned} \left(\frac{\varepsilon}{h}\mathbf{M}_u(q)\right) \delta q^\mathrm{u} & = h\tau^\mathrm{u} + \sum^{n_c}_{i=1}\left(\mathbf{J}_{\mathrm{u}_i}(q)\right)^\top \lambda_i \\ h\mathbf{K}_a\left(q^\mathrm{a} + \delta q^\mathrm{a} - u\right) & = h\tau^\mathrm{a} + \sum^{n_c}_{i=1} + \sum^{n_c}_{i=1}\left(\mathbf{J}_{\mathrm{u}_i}(q)]\right)^\top \lambda_i \\ \mathbf{J}_i\delta q + \begin{bmatrix} \phi_i \\ 0_2 \end{bmatrix} & \in \mathcal{K}^\star_i \\ \lambda_i & \in \mathcal{K}_i \\ v_i^\top \lambda_i & = 0 \end{aligned}

Object Dynamics

Impedance-Controlled Actuator Dynamics

Non-Penetration

Friction Cone Constraints

Conic Complementarity

KKT Optimality

Conditions of SOCP

Quasi-dynamic Simulator

Original SOCP Problem

Interior-Point Relaxation

\begin{aligned} q^\mathrm{a}_0 \end{aligned}
\begin{aligned} u \end{aligned}

Example: Box vs. wall

Randomized smoothing

Barrier smoothing

\begin{aligned} q^\mathrm{a}_0 + u \end{aligned}
\begin{aligned} q^\mathrm{a}_1 \end{aligned}
\begin{aligned} \rho(w) = \sqrt{\frac{4\kappa}{(w^\top \kappa w + 4)^3}} \end{aligned}

Randomized smoothing distribution that results in barrier smoothing

Barrier vs. Randomized Smoothing

Barrier & Randomized Smoothing are Equivalent

Gradient-based Optimization with Dynamics Smoothing

Scales extremely well in highly-rich contact

Efficient solutions in ~10s.

\begin{aligned} \min_{u_{0:T}, q_{0:T}} \quad & \frac{1}{2}\|q_T^\mathrm{u} - q^\mathrm{u}_{goal}\|^2 \\ & q_{t+1} = {\color{red} \mathbb{E}_{w_t\sim\rho}}\left[f(q_t, u_t + {\color{red}w_t})\right] \\ & q_0 = q_{initial} \end{aligned}
\begin{aligned} \min_{u_0} \quad & \frac{1}{2}\|{\color{red} \mathbb{E}_{w_t\sim\rho}}f^\mathrm{u}(q_0,u_0 {\color{red} + w_t}) - q^\mathrm{u}_{goal}\|^2 \end{aligned}

Single Horizon

Single Horizon

Multi-Horizon

Fundamental Limitations with Local Search

How do we push in this direction?

How do we rotate further in presence of joint limits?

Highly non-local movements are required to solve these problems

Rapidly Exploring Random Tree (RRT) Algorithm

 [10] Figure Adopted from Tao Pang's Thesis Defense, MIT, 2023

\mathcal{C}

(1) Sample subgoal 

\mathcal{C}

(2) Find nearest node

\mathcal{C}

(3) Grow towards 

RRT for Dynamics

Works well for Euclidean spaces. Why is it hard to use for dynamical systems?

What is "Nearest" in a dynamical system?

Rajamani et al., "Vehicle Dynamics", Springer Mechanical Engineering Series, 2011

Suh et al., "A Fast PRM Planner for Car-like Vehicles", self-hosted, 2018.

Closest in Euclidean space might not be closest for dynamics.

A Dynamically Consistent Distance Metric

\begin{aligned} \color{blue} q^\mathrm{u}_{goal} \end{aligned}
\begin{aligned} d({\color{blue} q^\mathrm{u}_{goal}}; {\color{red} q_0}) \end{aligned}

What is the right distance metric

\begin{aligned} \min_{u_0} \quad & \frac{1}{2}\|u_0\|^2 \\ \text{s.t.}\quad & f^\mathbf{u}({\color{red}q_0},u_0) = {\color{blue} q^\mathrm{u}_{goal}} \end{aligned}

What is the right distance metric

\begin{aligned} d({\color{blue} q^\mathrm{u}_{goal}}; {\color{red} q_0}) = \end{aligned}

Fix some nominal values for      ,

How far is            from       ?

\begin{aligned} \color{red} q_0 \end{aligned}
\begin{aligned} \color{red} q_0 \end{aligned}

The least amount of "Effort"

to reach the goal

\begin{aligned} \color{red} q_0 \end{aligned}

A Dynamically Consistent Distance Metric

\begin{aligned} d({\color{blue} q^\mathrm{u}_{goal}}; {\color{red} q_0}) = \end{aligned}

We can derive a closed-form solution under linearization of dynamics

\begin{aligned} \min_{u_0} \quad & \frac{1}{2}\|u_0\|^2 \\ \text{s.t.}\quad & f^\mathbf{u}({\color{red}q_0},u_0) = {\color{blue} q^\mathrm{u}_{goal}} \end{aligned}
\begin{aligned} \|f^\mathrm{u}({\color{red} q_0}, 0) - {\color{blue} q^\mathrm{u}_{goal}}\|^2_\mathbf{\Sigma^{-1}} \end{aligned}
\begin{aligned} \Sigma & = \mathbf{B}^\mathrm{u}{\mathbf{B}^\mathrm{u}}^\top \end{aligned}
\begin{aligned} d({\color{blue} q^\mathrm{u}_{goal}}; {\color{red} q_0}) = \end{aligned}

Mahalanobis Distance induced by the Jacobian

\begin{aligned} \min_{\delta u} \quad & \frac{1}{2}\|\delta u\|^2 \\ \text{s.t.}\quad & \mathbf{B}^\mathrm{u}({\color{red}q_0},0)\delta u + f^\mathrm{u}({\color{red}q_0}, 0) = {\color{blue} q^\mathrm{u}_{goal}}\\ & \mathbf{B}^\mathrm{u}\coloneqq \partial f^\mathrm{u}/ \partial u_0 \end{aligned}

Linearize around                  (no movement)

\begin{aligned} \bar{u}_0 = 0 \end{aligned}
\begin{aligned} d({\color{blue} q^\mathrm{u}_{goal}}; {\color{red} q_0}) = \end{aligned}

Jacobian of dynamics

A Dynamically Consistent Distance Metric

\begin{aligned} \|f^\mathrm{u}({\color{red} q_0}, 0) - {\color{blue} q^\mathrm{u}_{goal}}\|^2_\mathbf{\Sigma^{-1}} \end{aligned}
\begin{aligned} \Sigma & = \mathbf{B}^\mathrm{u}{\mathbf{B}^\mathrm{u}}^\top \end{aligned}
\begin{aligned} d({\color{blue} q^\mathrm{u}_{goal}}; {\color{red} q_0}) = \end{aligned}

Mahalanobis Distance induced by the Jacobian

Locally, dynamics are:

\begin{aligned} q_{next} = \mathbf{B}(q_0,0)\delta u + f(q_0,0) \end{aligned}

Large Singular Values,

Less Required Input

\begin{aligned} \mathbf{B}^\mathrm{u}\coloneqq \partial f^\mathrm{u}/\partial u \end{aligned}

A Dynamically Consistent Distance Metric

Locally, dynamics are:

\begin{aligned} q_{next} = \mathbf{B}(q_0,0)\delta u + f(q_0,0) \end{aligned}

(In practice, requires regularization)

\begin{aligned} \|f^\mathrm{u}({\color{red} q_0}, 0) - {\color{blue} q^\mathrm{u}_{goal}}\|^2_\mathbf{\Sigma^{-1}} \end{aligned}
\begin{aligned} \Sigma & = \mathbf{B}^\mathrm{u}{\mathbf{B}^\mathrm{u}}^\top \end{aligned}
\begin{aligned} d({\color{blue} q^\mathrm{u}_{goal}}; {\color{red} q_0}) = \end{aligned}

Mahalanobis Distance induced by the Jacobian

\begin{aligned} \mathbf{B}^\mathrm{u}\coloneqq \partial f^\mathrm{u}/\partial u \end{aligned}

Zero Singular Values,

Requires Infinite Input

A Dynamically Consistent Distance Metric

Contact problem strikes again.

According to this metric, infinite distance if no contact is made!

What if there is no contact?

\begin{aligned} \|f^\mathrm{u}({\color{red} q_0}, 0) - {\color{blue} q^\mathrm{u}_{goal}}\|^2_\mathbf{\Sigma^{-1}} \end{aligned}
\begin{aligned} \Sigma & = \mathbf{B}^\mathrm{u}{\mathbf{B}^\mathrm{u}}^\top \end{aligned}
\begin{aligned} d({\color{blue} q^\mathrm{u}_{goal}}; {\color{red} q_0}) = \end{aligned}

Mahalanobis Distance induced by the Jacobian

\begin{aligned} \mathbf{B}^\mathrm{u}\coloneqq \partial f^\mathrm{u}/\partial u \end{aligned}

A Dynamically Consistent Distance Metric

\begin{aligned} \|f^\mathrm{u}_{\color{green}\rho}({\color{red} q_0}, 0) - {\color{blue} q^\mathrm{u}_{goal}}\|^2_\mathbf{\Sigma^{-1}_{\color{green}\rho}} \end{aligned}
\begin{aligned} \Sigma_{\color{green}\rho} & = \mathbf{B}^\mathrm{u}_{\color{green}\rho}{\mathbf{B}_{\color{green}\rho}^\mathrm{u}}^\top \end{aligned}
\begin{aligned} d({\color{blue} q^\mathrm{u}_{goal}}; {\color{red} q_0}) = \end{aligned}

Mahalanobis Distance induced by the Jacobian

\begin{aligned} \mathbf{B}^\mathrm{u}_{\color{green}\rho}\coloneqq \partial f^\mathrm{u}_{\color{green}\rho}/\partial u \end{aligned}
\begin{aligned} {\color{green} f^\mathrm{u}_\rho(q,u) \coloneqq \mathbb{E}_{w\sim\rho}[f^\mathrm{u}(q,u+w)]} \end{aligned}

Again, dynamic smoothing comes to the rescue!

A Dynamically Consistent Distance Metric

Now we can apply RRT to contact-rich systems!

However, these still require lots of random extensions!

With some chance, place the actuated object in a different configuration.

(Regrasping / Contact-Sampling)

Contact-Rich RRT with Dynamic Smoothing

Our method can find solutions through contact-rich systems in few iterations! (~ 1 minute)

What our paper is about

1. Why is RL succeeding where model-based methods struggle?

 

 

 

2. Can we do better by understanding?

  • RL Regularizes Landscapes using stochasticity 
  • Allows Monte-Carlo Abstraction of Contact Modes
  • Global optimization with stochasticity 
  • interior-point smoothing of contact dynamics
  • Efficient gradient computation using sensitivity analysis
  • Use of RRT to perform fast online global planning

Much to Learn & Improve on from RL's success

Teaser

Meet us at Posters!

Tao Pang*

H.J. Terry Suh*

Lujie Yang

Russ Tedrake

ThBT 27.07

Paper

Code

Poster

ICRA Presentation

By Terry Suh

ICRA Presentation

  • 119