Contributions around the Boltzmann equation and some of its variants

Thomas Borsoni

supervised by

Laurent Boudin & Laurent Desvillettes

1/27

Mesoscopic

Microscopic

Macroscopic

(statistical)

description of gases

2/27

Density of molecules:   \(f \equiv f_{t,x}(v)\)

The original Boltzmann equation

Statistical description of a monoatomic gas

[A. Greg: Kinetic theory of gases, wikipedia.]

\partial_t f_{t,x}(v) + v \cdot \nabla_x f_{t,x}(v) = Q(f_{t,x})(v)
v
x
+

advection

collisions

(e.g. \(\mathrm{Ar} \) )

3.1/27

[A. Greg: Kinetic theory of gases, wikipedia.]

Focus on collisions

the Homogeneous Boltzmann equation

Density of molecules:   \(f_t(v)\)

\partial_t f_t(v) = Q(f_t)(v)

\(x \)

advection

\(+ \, v \cdot \nabla_x f\)

3.2/27

the collision operator

v
v_*
v'
v'_*
x
\begin{align*} v' = \frac{v+v_*}{2} + \frac{|v-v_*|}{2} \sigma \\ v'_* = \frac{v+v_*}{2} - \frac{|v-v_*|}{2} \sigma\\ \end{align*}
\newcommand{\Sb}{\mathbb{S}} \sigma \in \Sb^2
\newcommand{\dd}{\mathrm{d}} \textcolor{black}{Q(f)(v) = }\iint_{\R^3 \times \mathbb{S}^2} \textcolor{black}{\big( f(v') f(v'_*) - f(v) f(v_*) \big)} \, B(v,v_*,\sigma) \, \dd \sigma \, \dd v_*
\begin{align*} v+v_*&=v'+v'_* \\ |v|^2 + |v_*|^2 &= |v'|^2 + |v'_*|^2 \\ \end{align*}

Conservation of

mass, momentum, energy

\implies

3.3/27

Entropy and equilibrium

v
f^{\rm in}
f_t \underset{t \to \infty}{\longrightarrow} c \, e^{-\frac{|v-\textcolor{blue}{u}|^2}{2 \textcolor{blue}{T}} }
v
\textcolor{blue}{u}

The Boltzmann entropy:

\newcommand{\dd}{\mathrm{d}} H (f) := \int_{\R^3} (f \log f - f)(v) \, \dd v

2.  \(D(g) = 0 \iff g =M \) a Maxwellian:

characterization of equilibria

M(v) \propto \exp\left(-\frac{|v-\textcolor{blue}{u}|^2}{2 \textcolor{blue}{T}} \right)
\partial_t f_t(v) = Q(f_t)(v), \\ f_0 = f^{\rm in},

Boltzmann's H Theorem

1. If \(f \equiv f_t(v)\) solves

\(2^{nd}\) principle of thermodynamics

\((HB)\)

then

\newcommand{\dd}{\mathrm{d}} \frac{\dd}{\dd t}H (f_t) =: - D(f_t) \leq 0.

Illustration of the expected behaviour

4/27

\textcolor{blue}{\sqrt{T}}

original

monoatomic molecules

 

polyatomic

molecules

 

Part \(\mathrm{I}.1\)

Part \(\mathrm{ I}.2\)

polyatomic molecules

resonant collisions

fermions

Part \(\mathrm{II}\)

e.g. \(\mathrm{Ar}\)

e.g. \(\mathrm{N_2}\)

e.g. \(\mathrm{CO_2}\)

e.g. \(\mathrm{e^-}\)

5/27

Contributions

\(\mathrm{I}.1\). Boltzmann equation for polyatomic gases

\(\mathrm{I}.2\). Boltzmann equation for polyatomic gases with (quasi-)resonant collisions

\(\mathrm{II}\). Boltzmann-Fermi-Dirac equation

Bonus: general weighted \(L^p\) Csiszar-Kullback-Pinsker inequalities

- General modelling framework for single gas                     & mixtures with chemical reactions

- Compactness result in resonant setting

- Develop & study quasi-resonant Boltzmann model

- Entropy/entropy production inequalities via a transfer method

- Relaxation to equilibrium with explicit rate

w/ Lods

w/ Bisi, Groppi

w/ Boudin, Mathiaud, Salvarani

[1,2]

[4]

[5]

[3]

[1]  TB, M. Bisi, M. Groppi, Commun. Math. Phys., 2022.

[3] TB, L. Boudin, F. Salvarani, J. Mat. Anal. Appl., 2023.

[4] TB, J. Stat. Phys., 2024.

[2] M. Bisi, TB, M. Groppi, Kinet. Relat. Models, 2024.

[5] TB, B. Lods, preprint, 2024.

6/27

w/ Bisi, Groppi

[1]   TB, M. Bisi, M. Groppi: "A general framework for the kinetic modelling of polyatomic gases", Commun. Math. Phys., 2022.

[2]  M. Bisi, TB, M. Groppi: "An internal state kinetic model for chemically reacting mixtures of monatomic and polyatomic gases", Kinet. Relat. Models, 2024.

Part \(\mathrm{I}\). Boltzmann equation for polyatomic gases

[1]

[3] TB, L. Boudin, F. Salvarani: "Compactness property of the linearized Boltzmann operator for a polyatomic gas undergoing resonant collisions", J. Mat. Anal. Appl., 2023.

w/ Boudin, Mathiaud, Salvarani

[3]

\(\mathrm{I}.1\). Boltzmann equation for polyatomic gases

\(\mathrm{I}.2\). Boltzmann equation for polyatomic gases with (quasi-)resonant collisions

General modelling framework for single gas                     & mixtures with chemical reactions

[2]

Compactness result in resonant setting

Develop & study quasi-resonant Boltzmann model

7/27

\(\R^3 \times \textcolor{orange}{\R^3 \times \N \times \N \times \N}\)

\(\mathrm{I}.1\). internal structure of polyatomic molecules: rotation, vibration,...

v
\omega
n_1
n_2
n_3
(v,\textcolor{orange}{\omega, n_1, n_2, n_3})
\in

state of the molecule

space of states

energy of the molecule

\frac12 |v|^2 + \textcolor{orange}{\frac12 |\omega|^2 + n_1 E_1 + n_2 E_2 + n_3 E_3 + E_{pot}}

An example:

8.1/27

\(\R^3 \times \textcolor{orange}{\mathcal{E}}\)

\(\mathrm{I}.1\). internal structure of polyatomic molecules: general setting

v
(v,\textcolor{orange}{\zeta})
\in

state of the molecule

space of states

energy of the molecule

\frac12 |v|^2 + \textcolor{orange}{\varepsilon(\zeta)}
\newcommand{\E}{\mathcal{E}}
\zeta

\((\mathcal{E}, \mu)\)

\(\varepsilon : \mathcal{E} \to \R\)

2. Internal energy function:

existence of fundamental energy level

finiteness of the partition function

\(\bar{\varepsilon} := \varepsilon - \inf_{\mu}  {\varepsilon}\)             (\( : \mathcal{E} \to \R_+\))

1. Space of internal states:

[TB, Bisi, Groppi]

8.2/27

a parallel with probability theory

polyatomic internal structure

probability theory setting

\( (\Omega, \; \mathbb{P}) \) space of events

\( X : \Omega \to \R \)    real random var.

\( (\mathcal{E}, \; \mu) \) space of internal states

\( \bar{\varepsilon} : \mathcal{E} \to \R_+ \)    energy function

\( (\R, \, \mathbb{P}_X)\) space of outcomes

\( \mathbb{P}_X\) on \(\R\)    law of \(X\)

\( (\R_+, \, \mu_{\bar{\varepsilon}}) \) space of energy levels

\( \mu_{\bar{\varepsilon}}\) on \(\R_+\)    energy law

model with continuous energy levels

[Borgnakke, Larsen 75]

 [Desvillettes 97]...

model with discrete energy levels

[Groppi, Spiga 99]

[Giovangigli 99]...

generalization

and pre-existing models

9/27

Resonant collision

conservations

\(\mathrm{I}.2\). A model for quasi-resonant collisions

v
\textcolor{olive}{I}
\mathcal{M}(v,I) \propto\, \exp \left(-\frac{|v-\textcolor{blue}{u}|^2}{2 \textcolor{blue}{T_k}} - \frac{I}{\textcolor{blue}{T_i}} \right)

Equilibrium:

two temperatures

f \equiv f_{t,x}(v,I)
v,I
v_*,I_*
v',I'
v'_*,I'_*
\begin{align*} I+I_* &= I' + I'_* \end{align*}
\begin{align*} v+v_*&=v'+v'_* \\ \frac12|v|^2 + I + \frac12|v_*|^2 + I_* &=\frac12|v'|^2 + I' + \frac12|v'_*|^2 + I'_* \end{align*}

(separation kinetic/internal)

10.1/27

\lambda

Quasi-resonant collision

conservations

\(\mathrm{I}.2\). A model for quasi-resonant collisions

v,I
v_*,I_*
v',I'
v'_*,I'_*
\begin{align*} v+v_*&=v'+v'_* \\ \frac12|v|^2 + I + \frac12|v_*|^2 + I_* &=\frac12|v'|^2 + I' + \frac12|v'_*|^2 + I'_* \end{align*}
\begin{align*} I+I_* &\approx I' + I'_* \end{align*}
v
\textcolor{olive}{I}
f \equiv f_{t,x}(v,I)

Equilibrium:

\mathcal{M}(v,I) \propto\, \exp \left(-\frac{|v-\textcolor{blue}{u}|^2}{2 \textcolor{blue}{T}} - \frac{I}{\textcolor{blue}{T}} \right)

one temperature

(TB, Boudin, Mathiaud, Salvarani)

10.2/27

model for quasi-resonant collisions

\newcommand{\dd}{\mathrm{d}} Q^{\textcolor{red}{\text{quasi-res}}}_{\textcolor{red}{\lambda}}(f)(v,I) = \iint_{\R^3 \times \mathbb{S}^2} \iiint_{(\R_+)^3} \big[ f' f'_* - f f_* \big] \times B^{\textcolor{red}{\text{quasi-res}}}_{\textcolor{red}{\lambda}} \times \varphi(I'_*) \, \dd I'_* \, \varphi(I') \, \dd I' \, \varphi(I_*) \, \dd I_* \, \dd v_* \, \dd \sigma
B^{\textcolor{red}{\text{quasi-res}}}_{\textcolor{red}{\lambda}} = B^{\rm \textcolor{grey}{standard}} \times c(\cdot) \frac{\mathbf{1_{\textcolor{red}{\mathcal{V}_{\lambda}}}}}{\textcolor{red}{\lambda}}

Family of collision kernels:

Family of collision operators:

\textcolor{black}{\forall} \lambda \textcolor{black}{> 0,}

Resonant asymptotics

Q^{\textcolor{red}{\text{quasi-res}}}_{\textcolor{red}{\lambda}}(f) \underset{\textcolor{red}{\lambda} \to 0}{\longrightarrow} Q^{\rm \textcolor{green}{res}} (f),
Q^{\rm \textcolor{green}{res}} (f)(v,I) = \iint_{\R^3 \times \mathbb{S}^2} \iint_{(\R_+)^{\textcolor{green}{2}}} \big[ f' f'_* - f f_* \big] \times B^{\rm \textcolor{green}{res}} \times \textcolor{green}{\varphi(I+I_* - I')\,\varphi(I') \, \mathrm{d} I'} \, \varphi(I_*) \, \mathrm{d} I_* \, \mathrm{d} v_* \, \mathrm{d} \sigma,
B^{\rm \textcolor{green}{res}} = B^{\rm \textcolor{grey}{standard}} (I'_* = I+I_* - I') E

\(\mathcal{V}_{\lambda}\)

\textcolor{black}{\forall} \lambda \textcolor{black}{> 0,}

11/27

quasi-resonant dynamic

Homogeneous quasi-resonant Boltzmann dynamic's expected behaviour

time

\(T_i\) & \(T_k\) relax towards each other

\(f\) (almost) stays a two-temperature Maxwellian (\(T_i\) & \(T_k\))

\(f\) relaxes to a two-temperature Maxwellian

short-time

long-time

Landau-Teller

ODE system

parameters: \(\lambda = 0.1\),    \(T_i^0 = 50\),    \(T_k^0 = 1\),    \(T_{eq} = 20.6\)

Numerical experiment for validation

  • Simulate quasi-resonant Boltzmann with DSMC 
  • Solve Landau-Teller

12/27

internal state

internal energy level

internal energy quantile

Perspectives  Part \(\mathrm{I}\)

\(\mathrm{I}.1\). Explore links between paradigms and their use

  • Physical modeling
  • General proofs

Technical computations

Numerical simulations

(particle-based)

\(\mathrm{I}.2\). Idea of an Asymptotic-Preserving scheme for quasi-resonant Boltmzann (param. \(\lambda\))

time

Get the temperatures via Landau-Teller system

Take the solution to be a two-temperature Maxwellian

Simulate the corresponding resonant Boltzmann equation

\(\mathcal{O}(1)\) 

\(\textcolor{black}{\mathcal{O}(} \lambda^{-2} \textcolor{black}{)}   \)

13/27

Tool

Entropy method: functional inequalities

Goal

Explicit rate of relaxation to equilibrium for solutions to the Boltzmann-Fermi-Dirac equation

[4] TB: "Extending Cercignani's conjecture results from Boltzmann to Boltzmann-Fermi-Dirac equation", J. Stat. Phys., 2024.

[5] TB, B. Lods: "Quantitative relaxation towards equilibrium for solutions to the Boltzmann-Fermi-Dirac equation with cutoff hard potentials", preprint, 2024.

Part \(\mathrm{II}\). Boltzmann-fermi-Dirac equation

with B. Lods

Main result

Transfer of functional inequalities Boltzmann        Boltzmann-Fermi-Dirac

[4]

[5]

14/27

\partial_t f_t(v) = Q_{\textcolor{purple}{\delta}}(f_t)(v)

\(f \equiv f_{t,x}(v)\)

+
x
v

homogeneous BFD equation:

the Boltzmann-Fermi-Dirac equation

Q_{\color{purple} \delta}(f)(v) = \iint_{\R^3 \times \mathbb{S}^2} \left[f' f'_* \textcolor{purple}{(1 - \delta f) (1-\delta f_*)} - f f_* \textcolor{purple}{(1 - \delta f')(1-\delta f'_*)} \right] B \; \mathrm{d} v_* \, \mathrm{d} \sigma

Collision operator:

0 \leq f_{t,x} \leq \frac{1}{\textcolor{purple}{\delta}}
v
v_*
v'
v'_*

Fermions -> Pauli exclusion principle -> quantum parameter \(\delta>0\)

1. Dissipation of the Fermi-Dirac entropy

2. Equilibria: Fermi-Dirac statistics

H Theorem:

(+ saturated state)

\frac{1}{\textcolor{purple}{\delta}}
v

Conservation of mass, momentum, energy

\begin{align*} v+v_*&=v'+v'_* \\ |v|^2 + |v_*|^2 &= |v'|^2 + |v'_*|^2 \\ \end{align*}

15/27

Fermi-Dirac entropy

Boltzmann entropy

H_{\textcolor{green}{0}}(g) = \int g \log g - g
H_{\textcolor{purple}{\delta}}(f) = \int f \log f + {\textcolor{purple}{\delta}}^{-1} (1 - {\textcolor{purple}{\delta}} f) \log (1-{\textcolor{purple}{\delta}} f)
M_{\textcolor{green}{0}}(v) = e^{a - b|v-u|^2}
\displaystyle M_{\textcolor{purple}{\delta}}(v) = \frac{e^{a - b|v-u|^2}}{1 + \textcolor{purple}{\delta} e^{a - b|v-u|^2}}

Equilibrium: Fermi-Dirac statistics

Equilibrium: Maxwellian

entropies and equilibria

Boltzmann

Boltzmann-Fermi-Dirac

16.1/27

Fermi-Dirac entropy

H_{\textcolor{green}{0}}(g) = \int \Phi_{\textcolor{green}{0}}(g)
H_{\textcolor{purple}{\delta}}(f) = \int \Phi_{\textcolor{purple}{\delta}}(f)
M_{\textcolor{green}{0}}(v) = (\Phi_{\textcolor{green}{0}}')^{-1} \left(\alpha + \beta \cdot v + \gamma |v|^2 \right)
\displaystyle M_{\textcolor{purple}{\delta}}(v) = (\Phi_{\textcolor{purple}{\delta}}')^{-1} \left(\alpha + \beta \cdot v + \gamma |v|^2 \right)

Equilibrium: Fermi-Dirac statistics

Equilibrium: Maxwellian

entropies and equilibria

Boltzmann

Boltzmann-Fermi-Dirac

\Phi_{\textcolor{purple}{\delta}}'(x) = \log \left(\frac{x}{1 - \textcolor{purple}{\delta} x} \right)
\Phi_{\textcolor{green}{0}}' = \log

entropy    \(\displaystyle H : h \mapsto \int \Phi(h)\)          \(\Phi\)    \(\mathcal{C}^2\) st. convex

equilibrium 

M = (\Phi')^{-1} (\alpha \, \textcolor{blue}{\text{mass}} + \beta \cdot \textcolor{blue}{\text{momentum}} + \gamma \, \textcolor{blue}{\text{energy}})

Boltzmann entropy

16.2/27

- Existence & stability of solutions to homogeneous BFD for cut-off hard potentials

Lu, Wennberg

Existence and uniqueness of solutions to inhomogeneous BFD for cut-off kernels

Dolbeault

- Relaxation to equilibrium  of such solutions:

                             either \(f_0 =\)                      or    \(f_t \; \underset{t \to \infty}{\rightarrow}\)

Derivation of the equation from particles system (partially formal)

Benedetto, Castella, Esposito, Pulvirenti

at which rate?

some results on bfd

saturated state

Fermi-Dirac stat.

17/27

\partial_t f_t = Q(f_t)

\(D(g) \gtrsim {H(g|M^g)}^{1+\alpha}\)

\displaystyle \frac{\mathrm{d}}{\mathrm{d} t} H(f_t|M^{f_0}) = - D(f_t)

\(D(g) \geqslant C H(g|M^g)\)

the entropy method

Relative entropy to equilibrium:

\(H(f_t|M^{f_0}) \lesssim t^{-1/\alpha}\)

\(H(f_t|M^{f_0}) \lesssim e^{-Ct} \)

Csiszár-Kullback-Pinsker

\|f_t - M^{f_0}\|_{L^1}^2 \lesssim H(f_t|M^{f_0})
H(g|M^g) := H(g) - H(M^g) \geq 0

18/27

D_{\textcolor{green}{0}}(g) \gtrsim H_{\textcolor{green}{0}}(g|M_{\textcolor{green}{0}}^g)^{1 \textcolor{grey}{+ \alpha}}

Boltzmann

Toscani, Villani

Landau

D_{\textcolor{purple}{\delta}}(f) \gtrsim H_{\textcolor{purple}{\delta}}(f |M_{\textcolor{purple}{\delta}}^f)^{1 \textcolor{grey}{+ \alpha}}

LAndau-Fermi-Dirac

Desvillettes, Villani

Alonso, Bagland Desvillettes, Lods

D_{\textcolor{purple}{\delta}}(f) \gtrsim H_{\textcolor{purple}{\delta}}(f|M_{\textcolor{purple}{\delta}}^f)^{1 \textcolor{grey}{+ \alpha}}

Boltzmann-FERMI-DIRAC

?

known entropy inequalities

\(D_{\textcolor{green}{0}}(g) \gtrsim H_{\textcolor{green}{0}}(g|M_{\textcolor{green}{0}}^g)^{1 + \textcolor{grey}{\alpha}}\)

19/27

transfer of inequalities

D_{\textcolor{green}{0}}(g) \gtrsim H_{\textcolor{green}{0}}(g|M_{\textcolor{green}{0}}^g)^{1 + \alpha}

We know:

\gtrsim \; \; D_{\textcolor{green}{0}}\left(\frac{f}{1 - \textcolor{purple}{\delta} f}\right)

entropy inequality for Boltzmann

\gtrsim \; \; H_{\textcolor{green}{0}} \left(\frac{f}{1- \textcolor{purple}{\delta} f} \left| M_{\textcolor{green}{0}}^{\frac{f}{1- \textcolor{purple}{\delta} f}} \right. \right)^{1 + \alpha}

entropy inequality for Boltzmann-Fermi-Dirac

We want:

Toscani, Villani

D_{\textcolor{purple}{\delta}}(f) \gtrsim D_{\textcolor{green}{0}}\left(\frac{f}{1 - \textcolor{purple}{\delta} f}\right)

Fermi-Dirac dissipation of \(f\)

Boltzmann dissipation of \( \displaystyle \frac{f}{1-\textcolor{purple}{\delta} f} \)

\( \gtrsim\)

D_{\textcolor{purple}{\delta}}(f) \textcolor{red} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \textcolor{red}{\gtrsim} \;H_{\textcolor{purple}{\delta}}(f|M_{\textcolor{purple}{\delta}}^f)^{1 + \alpha}

?

20/27

H_{\textcolor{green}{0}}\left(\left.\frac{f}{1 - \textcolor{purple}{\delta} f}\right|M^{\frac{f}{1 - \textcolor{purple}{\delta} f}}_{\textcolor{green}{0}}\right) \geqslant H_{\textcolor{purple}{\delta}}(f|M^f_{\textcolor{purple}{\delta}}).

(as soon as all terms make sense)

Boltzmann relative entropy to equilibrium of  \(\displaystyle \frac{f}{1-\textcolor{purple}{\delta} f}\)

Fermi-Dirac relative entropy to equilibrium of \(f\)

Theorem.

[TB]

f \in L^1_2(\R^3)
\frac{f}{1 - \delta f} \in L^1_2(\R^3) \cap L \log L(\R^3),
\displaystyle 0 \leqslant f < \frac{1}{\delta}

For all

such that

and

\delta > 0

and

comparison of relative entropies

21.1/27

R_g : \delta \in \R_+ \mapsto H_{\delta}\left( \frac{g}{1 + \delta g} \left|M^{\frac{g}{1 + \delta g}}_{\delta} \right. \right).

Let

Then \(R_g\) is decreasing on \(\R_+\).

Proposition.

0 \leq g \in L^1_2(\R^3) \cap L \log L(\R^3)

and

Proof of the theorem

proof of the proposition

Key elements:

  • Taylor representation of the relative entropy to eq.
  • general link between entropy and equilibrium
  • fact that \(x \mapsto -\left(\frac{x}{1+\delta x} \right)^2\) is decreasing

Other technicalities:

  • differentiability on \(\R_+^*\)
  • continuity at \(\delta = 0\)

general considerations

specific use of Fermi-Dirac features

Show \(R_g' \leq 0\) on \(\R_+^*\) and \(R_g\)   \(\mathcal{C}^0\) on \(\R_+ \)

21.2/27

Proposition.

0\leqslant f \in L^1_2(\R^3)
\displaystyle \textcolor{black}{ 1 - \textcolor{purple}{\delta} f \geqslant} \kappa,

For all

such that

\textcolor{purple}{\delta} \textcolor{black}{> 0}, \;\; \kappa \textcolor{black}{\in (0,1)}

and

Classical / Fermi-Dirac equivalence

\textcolor{black}{H_{\textcolor{purple}{\delta}}(f|M^f_{\textcolor{purple}{\delta}}) \leqslant H_{\textcolor{green}{0}}\left(\left.\frac{f}{1 - \textcolor{purple}{\delta} f}\right|M^{\frac{f}{1 - \textcolor{purple}{\delta} f}}_{\textcolor{green}{0}}\right) \leqslant} \textcolor{black}{e}^{ \textcolor{black}{16} \, { \textcolor{black}{(}\kappa^{\textcolor{black}{-1}} \textcolor{black}{- 1)} } } \textcolor{black}{\cdot H_{\textcolor{purple}{\delta}}(f|M^f_{\textcolor{purple}{\delta}})} \phantom{\frac{1-\kappa}{\kappa}}
\textcolor{black}{D_{\textcolor{purple}{\delta}}(f) \leqslant D_{\textcolor{green}{0}}\left(\frac{f}{1 - \textcolor{purple}{\delta} f}\right) \leqslant} \kappa^{\textcolor{black}{-4}} \textcolor{black}{ \cdot D_{\textcolor{purple}{\delta}}(f)}

For Boltzmann/BFD (& Landau/LFD) dissipations:

entropy inequality for Boltzmann

entropy inequality for Boltzmann-Fermi-Dirac

1 - \delta f \geq \kappa
\iff
1
\textcolor{purple}{\delta} f
\kappa

[TB]

\implies

22/27

\|f^{\delta}_t-M_{\delta}\|_{L^p_k} \leq C \, (1+t)^{- \eta/p},

\(p \in [1,\infty), \, k \geq 0\).

Relaxation to equilibrium for Boltzmann-fermi-dirac

Theorem 2.

[TB, Lods]

Let \(0\leqslant f^{\rm in} \in L^1_3(\R^3)\). Then  \(\exists \delta^{\rm in} > 0\) such that  \(\forall \delta \in (0,\delta^{\rm in})\), if \(f^{\delta} \) sol. to homogeneous Boltzmann-Fermi-Dirac w/ cut-off hard potentials,

then

\sup_{t \geq 0}\|f^{\delta}_t\|_{L^\infty} \leq \mathbf{C}^{\rm in}

Proposition.

[TB, Lods]

Let \(0\leqslant f^{\rm in} \in L^1_3(\R^3)\). Then  \(\exists \,\mathbf{C}^{\rm in} > 0\) such that  \(\forall \delta> 0\), if \(f^{\delta} \) sol. to homogeneous Boltzmann-Fermi-Dirac with cut-off hard potentials,

then

D_{\textcolor{purple}{\delta}}(f) \gtrsim H_{\textcolor{purple}{\delta}}(f|M_{\textcolor{purple}{\delta}})^{1 + \alpha}
\|f^{\delta}_t-M_{\delta}\|^2_{L^1_k} \lesssim\, H_{\delta}(f_t^{\delta}|M_{\delta})

23/27

\Phi_0'' \circ \psi \geqslant \Phi_1'',
H_0 \left(\psi (f)|M_0^{\psi(f)} \right) \leqslant H_1 \left(f|M_1^{f} \right)

If

then

Let  \(\displaystyle H_0(f) = \int \Phi_0(f) \),   \(\displaystyle H_1(f) = \int \Phi_1(f) \)  with \(\Phi_0,\Phi_1\)   \(\mathcal{C}^2\)  s.t. convex, and

\psi = (\Phi_0')^{-1} \circ \Phi'_1.

1. Conjecture:

Comparison of relative entropies to equilibrium in general setting

Perspectives  Part \(\mathrm{II}\)

2. Rate of relaxation to equilibrium for homogeneous Boltzmann-Fermi-Dirac without cut-off

24/27

BONUS: general weighted \(L^p\) Csiszár-Kullback-Pinsker inequalities 

25/27

General weighted \(L^p\) Csiszár-Kullback-Pinsker

\|f-M^f\|^2_{L^p_{\varpi}} \leqslant {\small C_{\Phi, \varpi, p, f, M^f}} \; H(f|M^f),

Proposition.

(general entropy)

\(\displaystyle H(f) = \int\Phi(f)\),   \(\Phi \; \; \mathcal{C}^2\) st. convex,   \(M^f\) equilibrium, and

C_{\Phi, \varpi, p,f,M^f} = \left(\int_0^1 (1-\tau) \left\| \Phi''((1-\tau)M^f + \tau f)^{-1} \right\|_{L^{\frac{p}{2-p}}_{\varpi^2}}^{-1} \, \mathrm{d} \tau \right)^{-1}

For any \(f\), any \(p \in [1,2]\) and \(\varpi\) weight,

\|f-M_0^f\|^2_{L^p_{\varpi}} \leqslant 2 \max \left(\|f\|_{L^{\frac{p}{2-p}}_{\varpi^2}}, \|M_0^f\|_{L^{\frac{p}{2-p}}_{\varpi^2}} \right)\, H_{0}(f|M_0^f),

Corollary.

For any \(0\leq f \in L^1_2\cap L \log L(\R^3)\), \(p \in [1,2]\) and \(\varpi : \R^3 \to \R_+\),

(Boltzmann entropy)

\(\displaystyle H_0\) Boltzmann entropy and \(M_0^f\) Maxwellian.

[simplified]

[TB]

26/27

\(\mathrm{I}.1\). Boltzmann equation for polyatomic gases

\(\mathrm{I}.2\). Boltzmann equation for polyatomic gases with (quasi-)resonant collisions

\(\mathrm{II}\). Boltzmann-Fermi-Dirac equation

Bonus: general weighted \(L^p\) Csiszar-Kullback-Pinsker inequalities

- General modelling framework for single gas                     & mixtures with chemical reactions

- Compactness result in resonant setting

- Modelling & study of quasi-resonant Boltzmann

- Entropy/entropy production inequalities via a transfer method

- Relaxation to equilibrium with explicit rate

w/ Lods

w/ Bisi, Groppi

w/ Boudin, Mathiaud, Salvarani

Thank you for your attention!

[1]  TB, M. Bisi, M. Groppi: "A general framework for the kinetic modelling of polyatomic gases", Commun. Math. Phys., 2022.

[2] M. Bisi, TB, M. Groppi: "An internal state kinetic model for chemically reacting mixtures of monatomic and polyatomic gases", Kinet. Relat. Models, 2024.

[3] TB, L. Boudin, F. Salvarani: "Compactness property of the linearized Boltzmann operator for a polyatomic gas undergoing resonant collisions", J. Mat. Anal. Appl., 2023.

[4] TB: "Extending Cercignani's conjecture results from Boltzmann to Boltzmann-Fermi-Dirac equation", J. Stat. Phys., 2024.

[5] TB, B. Lods: "Quantitative relaxation towards equilibrium for solutions to the Boltzmann-Fermi-Dirac equation with cutoff hard potentials", preprint, 2024.

[1,2]

[4]

[5]

[3]

27/27

(\partial_t + v \cdot \nabla_x) f_{t,x}(v,\textcolor{orange}{\zeta}) = Q(f_{t,x})(v,\textcolor{orange}{\zeta})

\(f \equiv f_{t,x}(v, \textcolor{orange}{\zeta})\) density of molecules

\textcolor{orange}{\zeta}
+
x

the polyatomic Boltzmann equation

v

Boltzmann equation:

v,\textcolor{orange}{\zeta}
v_*,\textcolor{orange}{\zeta_*}
v',\textcolor{orange}{\zeta'}
v'_*,\textcolor{orange}{\zeta'_*}

Collision operator:

\newcommand{\dd}{\mathrm{d}} Q(f)(v,\textcolor{orange}{\zeta}) = \iint_{\R^3 \times \mathbb{S}^2} \textcolor{orange}{\iiint_{\mathcal{E}^3}} \left[f(v',\textcolor{orange}{\zeta'}) f(v'_*,\textcolor{orange}{\zeta'_*}) - f(v,\textcolor{orange}{\zeta}) f(v_*,\textcolor{orange}{\zeta_*}) \right] B \; \textcolor{orange}{\dd \mu^{\otimes 3}(\zeta_*,\zeta',\zeta'_*)} \, \dd v_* \, \dd \sigma
\begin{align*} v' = \frac{v+v_*}{2} + \textcolor{orange}{\sqrt{\Delta}} \; \sigma, \\ v'_* = \frac{v+v_*}{2} - \textcolor{orange}{\sqrt{\Delta}} \; \sigma,\\ \end{align*}
\newcommand{\Sb}{\mathbb{S}} \sigma \in \Sb^2

Conserved quantities

mass, momentum & energy

\begin{align*} v+v_*&=v'+v'_* \\ \frac12|v|^2 + \textcolor{orange}{\varepsilon(\zeta)} + \frac12|v_*|^2 + \textcolor{orange}{\varepsilon(\zeta_*)} &= \frac12|v'|^2 + \textcolor{orange}{\varepsilon(\zeta')} + \frac12|v'_*|^2 + \textcolor{orange}{\varepsilon(\zeta'_*)} \\ \end{align*}
\textcolor{orange}{\Delta} := \frac14 |v-v_*|^2 + \textcolor{orange}{\varepsilon(\zeta) + \varepsilon(\zeta_*) - \varepsilon(\zeta') - \varepsilon(\zeta'_*)}

2. Characterization of equilibria

H Theorem

1.  \(2^{nd}\)  principle of thermodynamics

3. Mass-action law

extension to mixtures with chemical reactions

\(\bullet\) models ​\((\mathcal{E_i},\mu_i)\) and \(\varepsilon_i\) for \(i = 1, \dots, N \)

\(\bullet\) study \(f \equiv (f_i)_i\),   with \( f_i : \R^3 \times \mathcal{E}_i \to \R_+ \)

\(\bullet\) system of Boltzmann equations

\partial_t f_i + v \cdot \nabla_x f_i = Q(f)
\forall \, i,

collisions &

chemical reactions

Energy of reaction

\Delta E = \varepsilon^0_k + \varepsilon^0_{\ell} - \varepsilon^0_i - \varepsilon^0_j
i
j
k
\ell
v \; \, \; \; \; \; \zeta

[Bisi, B., Groppi]

\(\varepsilon^0 := \text{inf ess}_{\mu} \;\varepsilon\)

compactness result of the linearized resonant Boltzmann operator

resonant collision operator \(Q(f)\)

linearize around equilibrium

resonant linearized operator \(\mathcal{L}f\)

\mathcal{L} = K - \nu \mathrm{Id}

[T.B., Boudin, Salvarani]

Theorem.    \(K\) compact operator of \(L^2(\R^3 \times \R_+, \mathrm{d} v \, \varphi(I) \, \mathrm{d}I)\)

useful for

  • existence & uniqueness close-to-equilibrium 
  • study of the spectrum

   Proof strategy:

  • split the study into kinetic & internal parts
  • kinetic part \(\leftrightarrow\) monoatomic (+improvement)

BONUS: a nice change of variables in the sphere (variant to Grad's proof / compactness monoatomic)

\newcommand{\Sb}{\mathbb{S}} (\sigma_1, \sigma_2) \; \in \Sb^2 \times \Sb^2 \quad \mapsto \quad \left(z = \frac{\sigma_1 + \sigma_2}{2} , \; A \right) \; \in \mathcal{B}_{\R^3}(0,1) \times \Sb^1
\newcommand{\Sb}{\mathbb{S}} \newcommand{\dd}{\mathrm{d}} \iint_{\Sb^2 \times \Sb^2} \varphi \left( \frac{\sigma_1 + \sigma_2}{2} \right) \, \dd \sigma_1 \, \dd \sigma_2 = \iint_{\mathcal{B}_{\R^3}(0,1) \times \Sb^1} \varphi(z) \, \textcolor{brown}{4|z|^{-1}} \, \dd z \, \dd A
\newcommand{\Sb}{\mathbb{S}}
\displaystyle = \int_0^1 (1-\tau) \int(f - M^f)^2 \, \Phi''(M^f + \tau (f-M^f)) \, \mathrm{d} v \, \mathrm{d} \tau
\displaystyle H(f|M^f) = \int \, \int_{M^f(v)}^{f(v)} \, (f(v) - x) \, \Phi''(x) \, \mathrm{d} x \, \mathrm{d} v

Taylor representation of relative entropy to equilibrium

 \(\displaystyle H(f) = \int \Phi(f) \, \mathrm{d} v\)   with \(\Phi\)   \(\mathcal{C}^2\)  s.t. convex

entropy:

M^f = (\Phi')^{-1} (\textcolor{blue}{\text{something conserved}})

Link between entropy and equilibrium

\psi_1, \psi_2, \dots, \psi_n
M = (\Phi')^{-1} \left( \sum_{i=1}^n \textcolor{blue}{\alpha_i} \, \psi_i \right)

Entropy

Equilibrium

Conserved quantities

\newcommand{\dd}{\mathrm{d}} H(f) = \int \Phi(f)
\newcommand{\dd}{\mathrm{d}} \Phi \; \; \mathcal{C}^2

st. convex

general link

Lagrange multipliers

Functional to minimize

constraints

Minimizer

\|f^{\delta}_t-M_{\delta}\|_{L^p_k} \leq C \, (1+t)^{- \eta/p},

\(p \in [1,\infty), \, k \geq 0\), and with \(C,\eta\)  explicit and uniform in \(\delta\).

Relaxation to equilibrium for Boltzmann-fermi-dirac

Theorem 2.

[B., Lods]

Let \(0\leqslant f^{\rm in} \in L^1_3(\R^3)\). Then  \(\exists \delta^{\rm in} > 0\) such that  \(\forall \delta \in (0,\delta^{\rm in})\), if \(f^{\delta} \) sol. to Boltzmann-Fermi-Dirac w/ cut-off hard potentials,

(\(\delta\) is the quantum parameter)

Proof's core ingredients:

  1. \(L^{\infty}\)-bound on \(f^{\delta}\) independent of \(\delta\)
  2. Entropy/entropy production inequality
  3. Control of moments
  4. Maxwellian lower-bound
  5. Csiszar-Kullback-Pinsker inequality
1 - \delta f^{\delta} \geq \kappa
D_{\delta}(f_t^{\delta}) \geqslant C_t \; H_{\delta}(f_t^{\delta}|M_{\delta})^{1 + \alpha}
C_t \geqslant \widetilde{C}
\|f^{\delta}_t-M_{\delta}\|^2_{L^1_k} \leqslant C'\, H_{\delta}(f_t^{\delta}|M_{\delta})
\partial_t f_t^{\delta} = Q_{\delta} (f_t^{\delta}), \; \; f_0^{\delta} = f^{\rm in},

then

Proof's strategy:

\sup_{t \geq 0}\|f^{\delta}_t\|_{L^\infty} \leq \mathbf{C}^{\rm in}

the \(L^{\infty}\)-bound

Proposition.

[B., Lods]

Let \(0\leqslant f^{\rm in} \in L^1_3(\R^3)\). Then  \(\exists \,\mathbf{C}^{\rm in} > 0\) such that  \(\forall \delta> 0\), if \(f^{\delta} \) sol. to Boltzmann-Fermi-Dirac with cut-off hard potentials,

\delta \in (0, (1-\kappa) \mathbf{C}^{\rm in}) \; \; \implies \; \; 1 - \delta f^{\delta} \geq \kappa
Q_{\delta} \leqslant Q^+_0 + \widetilde{Q}^+_0 - Q^-_0
Q_{0} = Q^+_0 - Q^-_0

independent of \(\delta \)

\(f_t^{\delta}\) "sub-solution" to an eq. resembling classical Boltzmann

\(\widetilde{Q}^+_0\) "adjoint" to \(Q^+_0\)

(almost) copycat proof of same fact for classical Boltzmann

[Alonso, Gamba]

then

\partial_t f_t^{\delta} = Q_{\delta} (f_t^{\delta}), \; \; f_0^{\delta} = f^{\rm in},

Soutenance

By Thomas Borsoni

Soutenance

  • 8