Contributions around the Boltzmann equation and some of its variants
Thomas Borsoni
supervised by
Laurent Boudin & Laurent Desvillettes

1/27
Mesoscopic
Microscopic
Macroscopic

(statistical)


description of gases
2/27
Density of molecules: \(f \equiv f_{t,x}(v)\)

The original Boltzmann equation
Statistical description of a monoatomic gas

[A. Greg: Kinetic theory of gases, wikipedia.]
advection
collisions
(e.g. \(\mathrm{Ar} \) )

3.1/27
[A. Greg: Kinetic theory of gases, wikipedia.]
Focus on collisions
the Homogeneous Boltzmann equation
Density of molecules: \(f_t(v)\)

\(x \)
advection
\(+ \, v \cdot \nabla_x f\)
















3.2/27
the collision operator

Conservation of
mass, momentum, energy
3.3/27
Entropy and equilibrium


The Boltzmann entropy:
2. \(D(g) = 0 \iff g =M \) a Maxwellian:
characterization of equilibria
Boltzmann's H Theorem
1. If \(f \equiv f_t(v)\) solves
\(2^{nd}\) principle of thermodynamics
\((HB)\)
then
Illustration of the expected behaviour
4/27
original
monoatomic molecules



polyatomic
molecules




Part \(\mathrm{I}.1\)


Part \(\mathrm{ I}.2\)
polyatomic molecules
resonant collisions
fermions




Part \(\mathrm{II}\)
e.g. \(\mathrm{Ar}\)
e.g. \(\mathrm{N_2}\)
e.g. \(\mathrm{CO_2}\)
e.g. \(\mathrm{e^-}\)


5/27



Contributions
\(\mathrm{I}.1\). Boltzmann equation for polyatomic gases
\(\mathrm{I}.2\). Boltzmann equation for polyatomic gases with (quasi-)resonant collisions
\(\mathrm{II}\). Boltzmann-Fermi-Dirac equation
Bonus: general weighted \(L^p\) Csiszar-Kullback-Pinsker inequalities
- General modelling framework for single gas & mixtures with chemical reactions
- Compactness result in resonant setting
- Develop & study quasi-resonant Boltzmann model
- Entropy/entropy production inequalities via a transfer method
- Relaxation to equilibrium with explicit rate
w/ Lods
w/ Bisi, Groppi
w/ Boudin, Mathiaud, Salvarani
[1,2]
[4]
[5]
[3]
[1] TB, M. Bisi, M. Groppi, Commun. Math. Phys., 2022.
[3] TB, L. Boudin, F. Salvarani, J. Mat. Anal. Appl., 2023.
[4] TB, J. Stat. Phys., 2024.
[2] M. Bisi, TB, M. Groppi, Kinet. Relat. Models, 2024.
[5] TB, B. Lods, preprint, 2024.
6/27
w/ Bisi, Groppi
[1] TB, M. Bisi, M. Groppi: "A general framework for the kinetic modelling of polyatomic gases", Commun. Math. Phys., 2022.
[2] M. Bisi, TB, M. Groppi: "An internal state kinetic model for chemically reacting mixtures of monatomic and polyatomic gases", Kinet. Relat. Models, 2024.
Part \(\mathrm{I}\). Boltzmann equation for polyatomic gases
[1]
[3] TB, L. Boudin, F. Salvarani: "Compactness property of the linearized Boltzmann operator for a polyatomic gas undergoing resonant collisions", J. Mat. Anal. Appl., 2023.
w/ Boudin, Mathiaud, Salvarani
[3]
\(\mathrm{I}.1\). Boltzmann equation for polyatomic gases
\(\mathrm{I}.2\). Boltzmann equation for polyatomic gases with (quasi-)resonant collisions
General modelling framework for single gas & mixtures with chemical reactions
[2]
Compactness result in resonant setting
Develop & study quasi-resonant Boltzmann model
7/27

\(\R^3 \times \textcolor{orange}{\R^3 \times \N \times \N \times \N}\)
\(\mathrm{I}.1\). internal structure of polyatomic molecules: rotation, vibration,...
state of the molecule
space of states
energy of the molecule
An example:
8.1/27

\(\R^3 \times \textcolor{orange}{\mathcal{E}}\)
\(\mathrm{I}.1\). internal structure of polyatomic molecules: general setting
state of the molecule
space of states
energy of the molecule
\((\mathcal{E}, \mu)\)
\(\varepsilon : \mathcal{E} \to \R\)
2. Internal energy function:
existence of fundamental energy level
finiteness of the partition function
\(\bar{\varepsilon} := \varepsilon - \inf_{\mu} {\varepsilon}\) (\( : \mathcal{E} \to \R_+\))
1. Space of internal states:
[TB, Bisi, Groppi]
8.2/27
a parallel with probability theory
polyatomic internal structure
probability theory setting
\( (\Omega, \; \mathbb{P}) \) space of events
\( X : \Omega \to \R \) real random var.
\( (\mathcal{E}, \; \mu) \) space of internal states
\( \bar{\varepsilon} : \mathcal{E} \to \R_+ \) energy function

\( (\R, \, \mathbb{P}_X)\) space of outcomes
\( \mathbb{P}_X\) on \(\R\) law of \(X\)
\( (\R_+, \, \mu_{\bar{\varepsilon}}) \) space of energy levels
\( \mu_{\bar{\varepsilon}}\) on \(\R_+\) energy law

model with continuous energy levels
[Borgnakke, Larsen 75]
[Desvillettes 97]...
model with discrete energy levels
[Groppi, Spiga 99]
[Giovangigli 99]...
generalization
and pre-existing models
9/27
Resonant collision
conservations
\(\mathrm{I}.2\). A model for quasi-resonant collisions

Equilibrium:
two temperatures

(separation kinetic/internal)
10.1/27
Quasi-resonant collision
conservations
\(\mathrm{I}.2\). A model for quasi-resonant collisions


Equilibrium:
one temperature
(TB, Boudin, Mathiaud, Salvarani)
10.2/27
model for quasi-resonant collisions
Family of collision kernels:
Family of collision operators:
Resonant asymptotics
\(\mathcal{V}_{\lambda}\)
11/27
quasi-resonant dynamic
Homogeneous quasi-resonant Boltzmann dynamic's expected behaviour
time
\(T_i\) & \(T_k\) relax towards each other
\(f\) (almost) stays a two-temperature Maxwellian (\(T_i\) & \(T_k\))
\(f\) relaxes to a two-temperature Maxwellian
short-time
long-time
Landau-Teller
ODE system

parameters: \(\lambda = 0.1\), \(T_i^0 = 50\), \(T_k^0 = 1\), \(T_{eq} = 20.6\)
Numerical experiment for validation
- Simulate quasi-resonant Boltzmann with DSMC
- Solve Landau-Teller
12/27

internal state
internal energy level
internal energy quantile
Perspectives Part \(\mathrm{I}\)


\(\mathrm{I}.1\). Explore links between paradigms and their use
- Physical modeling
- General proofs
Technical computations
Numerical simulations
(particle-based)
\(\mathrm{I}.2\). Idea of an Asymptotic-Preserving scheme for quasi-resonant Boltmzann (param. \(\lambda\))
time
Get the temperatures via Landau-Teller system
Take the solution to be a two-temperature Maxwellian
Simulate the corresponding resonant Boltzmann equation
\(\mathcal{O}(1)\)
\(\textcolor{black}{\mathcal{O}(} \lambda^{-2} \textcolor{black}{)} \)
13/27
Tool
Entropy method: functional inequalities
Goal
Explicit rate of relaxation to equilibrium for solutions to the Boltzmann-Fermi-Dirac equation
[4] TB: "Extending Cercignani's conjecture results from Boltzmann to Boltzmann-Fermi-Dirac equation", J. Stat. Phys., 2024.
[5] TB, B. Lods: "Quantitative relaxation towards equilibrium for solutions to the Boltzmann-Fermi-Dirac equation with cutoff hard potentials", preprint, 2024.
Part \(\mathrm{II}\). Boltzmann-fermi-Dirac equation
with B. Lods
Main result
Transfer of functional inequalities Boltzmann Boltzmann-Fermi-Dirac
[4]
[5]
14/27
\(f \equiv f_{t,x}(v)\)
homogeneous BFD equation:
the Boltzmann-Fermi-Dirac equation

Collision operator:

Fermions -> Pauli exclusion principle -> quantum parameter \(\delta>0\)
1. Dissipation of the Fermi-Dirac entropy
2. Equilibria: Fermi-Dirac statistics
H Theorem:
(+ saturated state)


Conservation of mass, momentum, energy
15/27
Fermi-Dirac entropy
Boltzmann entropy
Equilibrium: Fermi-Dirac statistics
Equilibrium: Maxwellian
entropies and equilibria
Boltzmann




Boltzmann-Fermi-Dirac
16.1/27
Fermi-Dirac entropy
Equilibrium: Fermi-Dirac statistics
Equilibrium: Maxwellian
entropies and equilibria
Boltzmann


Boltzmann-Fermi-Dirac


entropy \(\displaystyle H : h \mapsto \int \Phi(h)\) \(\Phi\) \(\mathcal{C}^2\) st. convex
equilibrium
Boltzmann entropy
16.2/27
- Existence & stability of solutions to homogeneous BFD for cut-off hard potentials
Lu, Wennberg
Existence and uniqueness of solutions to inhomogeneous BFD for cut-off kernels
Dolbeault
- Relaxation to equilibrium of such solutions:
either \(f_0 =\) or \(f_t \; \underset{t \to \infty}{\rightarrow}\)
Derivation of the equation from particles system (partially formal)
Benedetto, Castella, Esposito, Pulvirenti
at which rate?


some results on bfd
saturated state
Fermi-Dirac stat.
17/27
\(D(g) \gtrsim {H(g|M^g)}^{1+\alpha}\)
\(D(g) \geqslant C H(g|M^g)\)
the entropy method
Relative entropy to equilibrium:
\(H(f_t|M^{f_0}) \lesssim t^{-1/\alpha}\)
\(H(f_t|M^{f_0}) \lesssim e^{-Ct} \)
Csiszár-Kullback-Pinsker
18/27
Boltzmann
Toscani, Villani
Landau
LAndau-Fermi-Dirac
Desvillettes, Villani
Alonso, Bagland Desvillettes, Lods
Boltzmann-FERMI-DIRAC
?
known entropy inequalities
\(D_{\textcolor{green}{0}}(g) \gtrsim H_{\textcolor{green}{0}}(g|M_{\textcolor{green}{0}}^g)^{1 + \textcolor{grey}{\alpha}}\)
19/27
transfer of inequalities
We know:
entropy inequality for Boltzmann
entropy inequality for Boltzmann-Fermi-Dirac
We want:
Toscani, Villani
Fermi-Dirac dissipation of \(f\)
Boltzmann dissipation of \( \displaystyle \frac{f}{1-\textcolor{purple}{\delta} f} \)
\( \gtrsim\)
?
20/27
(as soon as all terms make sense)
Boltzmann relative entropy to equilibrium of \(\displaystyle \frac{f}{1-\textcolor{purple}{\delta} f}\)
Fermi-Dirac relative entropy to equilibrium of \(f\)
Theorem.
[TB]
For all
such that
and
and
comparison of relative entropies
21.1/27
Let
Then \(R_g\) is decreasing on \(\R_+\).
Proposition.
and
Proof of the theorem
proof of the proposition
Key elements:
- Taylor representation of the relative entropy to eq.
- general link between entropy and equilibrium
- fact that \(x \mapsto -\left(\frac{x}{1+\delta x} \right)^2\) is decreasing
Other technicalities:
- differentiability on \(\R_+^*\)
- continuity at \(\delta = 0\)
general considerations
specific use of Fermi-Dirac features
Show \(R_g' \leq 0\) on \(\R_+^*\) and \(R_g\) \(\mathcal{C}^0\) on \(\R_+ \)
21.2/27
Proposition.
For all
such that
and
Classical / Fermi-Dirac equivalence
For Boltzmann/BFD (& Landau/LFD) dissipations:
entropy inequality for Boltzmann
entropy inequality for Boltzmann-Fermi-Dirac

[TB]
22/27
\(p \in [1,\infty), \, k \geq 0\).
Relaxation to equilibrium for Boltzmann-fermi-dirac
Theorem 2.
[TB, Lods]
Let \(0\leqslant f^{\rm in} \in L^1_3(\R^3)\). Then \(\exists \delta^{\rm in} > 0\) such that \(\forall \delta \in (0,\delta^{\rm in})\), if \(f^{\delta} \) sol. to homogeneous Boltzmann-Fermi-Dirac w/ cut-off hard potentials,
then
Proposition.
[TB, Lods]
Let \(0\leqslant f^{\rm in} \in L^1_3(\R^3)\). Then \(\exists \,\mathbf{C}^{\rm in} > 0\) such that \(\forall \delta> 0\), if \(f^{\delta} \) sol. to homogeneous Boltzmann-Fermi-Dirac with cut-off hard potentials,
then
23/27
If
then
Let \(\displaystyle H_0(f) = \int \Phi_0(f) \), \(\displaystyle H_1(f) = \int \Phi_1(f) \) with \(\Phi_0,\Phi_1\) \(\mathcal{C}^2\) s.t. convex, and
1. Conjecture:
Comparison of relative entropies to equilibrium in general setting
Perspectives Part \(\mathrm{II}\)
2. Rate of relaxation to equilibrium for homogeneous Boltzmann-Fermi-Dirac without cut-off
24/27
BONUS: general weighted \(L^p\) Csiszár-Kullback-Pinsker inequalities
25/27
General weighted \(L^p\) Csiszár-Kullback-Pinsker
Proposition.
(general entropy)
\(\displaystyle H(f) = \int\Phi(f)\), \(\Phi \; \; \mathcal{C}^2\) st. convex, \(M^f\) equilibrium, and
For any \(f\), any \(p \in [1,2]\) and \(\varpi\) weight,
Corollary.
For any \(0\leq f \in L^1_2\cap L \log L(\R^3)\), \(p \in [1,2]\) and \(\varpi : \R^3 \to \R_+\),
(Boltzmann entropy)
\(\displaystyle H_0\) Boltzmann entropy and \(M_0^f\) Maxwellian.
[simplified]
[TB]
26/27
\(\mathrm{I}.1\). Boltzmann equation for polyatomic gases
\(\mathrm{I}.2\). Boltzmann equation for polyatomic gases with (quasi-)resonant collisions
\(\mathrm{II}\). Boltzmann-Fermi-Dirac equation


Bonus: general weighted \(L^p\) Csiszar-Kullback-Pinsker inequalities
- General modelling framework for single gas & mixtures with chemical reactions
- Compactness result in resonant setting
- Modelling & study of quasi-resonant Boltzmann
- Entropy/entropy production inequalities via a transfer method
- Relaxation to equilibrium with explicit rate
w/ Lods
w/ Bisi, Groppi
w/ Boudin, Mathiaud, Salvarani
Thank you for your attention!


[1] TB, M. Bisi, M. Groppi: "A general framework for the kinetic modelling of polyatomic gases", Commun. Math. Phys., 2022.
[2] M. Bisi, TB, M. Groppi: "An internal state kinetic model for chemically reacting mixtures of monatomic and polyatomic gases", Kinet. Relat. Models, 2024.
[3] TB, L. Boudin, F. Salvarani: "Compactness property of the linearized Boltzmann operator for a polyatomic gas undergoing resonant collisions", J. Mat. Anal. Appl., 2023.
[4] TB: "Extending Cercignani's conjecture results from Boltzmann to Boltzmann-Fermi-Dirac equation", J. Stat. Phys., 2024.
[5] TB, B. Lods: "Quantitative relaxation towards equilibrium for solutions to the Boltzmann-Fermi-Dirac equation with cutoff hard potentials", preprint, 2024.
[1,2]
[4]
[5]
[3]


27/27
\(f \equiv f_{t,x}(v, \textcolor{orange}{\zeta})\) density of molecules

the polyatomic Boltzmann equation
Boltzmann equation:
Collision operator:

Conserved quantities
mass, momentum & energy
2. Characterization of equilibria
H Theorem
1. \(2^{nd}\) principle of thermodynamics
3. Mass-action law









extension to mixtures with chemical reactions
\(\bullet\) models \((\mathcal{E_i},\mu_i)\) and \(\varepsilon_i\) for \(i = 1, \dots, N \)
\(\bullet\) study \(f \equiv (f_i)_i\), with \( f_i : \R^3 \times \mathcal{E}_i \to \R_+ \)
\(\bullet\) system of Boltzmann equations
collisions &
chemical reactions
Energy of reaction:

[Bisi, B., Groppi]
\(\varepsilon^0 := \text{inf ess}_{\mu} \;\varepsilon\)
compactness result of the linearized resonant Boltzmann operator
resonant collision operator \(Q(f)\)
linearize around equilibrium
resonant linearized operator \(\mathcal{L}f\)
[T.B., Boudin, Salvarani]
Theorem. \(K\) compact operator of \(L^2(\R^3 \times \R_+, \mathrm{d} v \, \varphi(I) \, \mathrm{d}I)\)
useful for
- existence & uniqueness close-to-equilibrium
- study of the spectrum
Proof strategy:
- split the study into kinetic & internal parts
- kinetic part \(\leftrightarrow\) monoatomic (+improvement)
BONUS: a nice change of variables in the sphere (variant to Grad's proof / compactness monoatomic)


Taylor representation of relative entropy to equilibrium
\(\displaystyle H(f) = \int \Phi(f) \, \mathrm{d} v\) with \(\Phi\) \(\mathcal{C}^2\) s.t. convex
entropy:
Link between entropy and equilibrium
Entropy
Equilibrium
Conserved quantities
st. convex
general link
Lagrange multipliers
Functional to minimize
constraints
Minimizer
\(p \in [1,\infty), \, k \geq 0\), and with \(C,\eta\) explicit and uniform in \(\delta\).
Relaxation to equilibrium for Boltzmann-fermi-dirac
Theorem 2.
[B., Lods]
Let \(0\leqslant f^{\rm in} \in L^1_3(\R^3)\). Then \(\exists \delta^{\rm in} > 0\) such that \(\forall \delta \in (0,\delta^{\rm in})\), if \(f^{\delta} \) sol. to Boltzmann-Fermi-Dirac w/ cut-off hard potentials,
(\(\delta\) is the quantum parameter)
Proof's core ingredients:
- \(L^{\infty}\)-bound on \(f^{\delta}\) independent of \(\delta\)
- Entropy/entropy production inequality
- Control of moments
- Maxwellian lower-bound
- Csiszar-Kullback-Pinsker inequality
then
Proof's strategy:
the \(L^{\infty}\)-bound
Proposition.
[B., Lods]
Let \(0\leqslant f^{\rm in} \in L^1_3(\R^3)\). Then \(\exists \,\mathbf{C}^{\rm in} > 0\) such that \(\forall \delta> 0\), if \(f^{\delta} \) sol. to Boltzmann-Fermi-Dirac with cut-off hard potentials,
independent of \(\delta \)
\(f_t^{\delta}\) "sub-solution" to an eq. resembling classical Boltzmann
\(\widetilde{Q}^+_0\) "adjoint" to \(Q^+_0\)
(almost) copycat proof of same fact for classical Boltzmann
[Alonso, Gamba]
then
Soutenance
By Thomas Borsoni
Soutenance
- 8