Amrutha
Course Content Developer for Deep Learning course by Professor Mitesh Khapra. Offered by IIT Madras Online degree - Programming and Data Science.
Department of Computer Science and Engineering, IIT Madras
\(W^*\)
\(W\)
\(W^*\)
\(W\)
\(W^*\)
\(W\)
\(W^*\)
\(W\)
Choice of loss function
\(W^*\)
\(W\)
\(0\)
\(1\)
\(1\)
\(0\)
\(1\)
(binary inputs)
\(W^*\)
\(W\)
\(0.25\)
\(0.5\)
\(1.25\)
\(3.5\)
\(4.5\)
(real valued inputs)
\(W^*\)
\(W\)
\(W^*\)
\(W\)
\(W^*\)
\(W\)
\(0\)
\(1\)
\(1\)
\(0\)
\(1\)
(binary inputs)
\(W^*\)
\(W\)
\(W^*\)
\(W\)
\(W^*\)
\(W\)
\(W^*\)
\(W\)
\(P(\tilde x_{ij}|x_{ij})\)
\(P(\tilde x_{ij}|x_{ij})\)
\(0\)
\(1\)
\(2\)
\(3\)
\(9\)
\(|\textbf x_{i}| = 784 = 28 \times 28\)
\(28 * 28\)
\(0\)
\(1\)
\(2\)
\(3\)
\(9\)
\(|\textbf x_{i}| = 784 = 28 \times 28\)
\(28 * 28\)
\(\textbf h \in \mathbb R^d\)
\(\hat \textbf x_i \in \mathbb R^{784}\)
\(|\textbf x_{i}| = 784 = 28 \times 28\)
\(28 * 28\)
\(\textbf h \in \mathbb R^d\)
\(0\)
\(1\)
\(2\)
\(3\)
\(9\)
\(0\)
\(1\)
\(2\)
\(3\)
\(9\)
\( \max \limits_{\textbf x_i} \{ W_1^T \textbf x_i\}\)
\(s.t.\) \(\Vert \textbf x_i \Vert ^2 \) \(= \textbf x_i ^T \textbf x_i = 1 \)
Solution: \(\textbf x_i = \cfrac{W_1}{\sqrt {W_1^TW_1}}\)
\( \max \limits_{\textbf x_i} \{ W_1^T \textbf x_i\}\)
\(s.t.\) \(\Vert \textbf x_i \Vert ^2 \) \(= \textbf x_i ^T \textbf x_i = 1 \)
Solution: \(\textbf x_i = \cfrac{W_1}{\sqrt {W_1^TW_1}}\)
\(P(\tilde x_{ij}|x_{ij})\)
\(W^*\)
\(W\)
\(W^*\)
\(W\)
\(\hat \rho_l\)
\(\Omega (\theta) \)
\(0.2\)
\(\rho = 0.2\)
\(\hat \mathscr L (\theta) = \mathscr L (\theta) + \Omega (\theta) \)
\(W^*\)
\(W\)
\(P(\tilde x_{ij}|x_{ij})\)
Regularization
Weight decaying
Sparse
Contractive
By Amrutha