Tâche 3.3 : Caractériser les patterns de dynamique spatio-temporelle des
hyper-intensités de la substance blanche post-radiothérapie

RADIOAIDE - WP3

Alain TROUVÉ & Anton FRANÇOIS

ENS Paris Saclay - Centre Borelli

Objectifs Initiaux

  1. Retrouver l'historique des pixels dans le temps.
  2. Analyser les composantes géométriques longitudinales. (compression, dilatation, ré-allocation)

Metamorphoses

non-linear image registration: 

Image registration

temporal

Metamorphoses : Briefly

LDDMM can reach only images with same topology

Add intensity or reallocate classes allowing topologies changes.

\[+ \sqrt{1 - \rho} z_t\]

Topology and appearances variations

Metamorphoses : Briefly

Metamorphoses

Deformation with a flow of vector field.

\(\varphi_{t_1,t_2} = \mathrm{Id} + \int_{t_1}^{t_2} v_s \circ \varphi_s ds;  v_s \in V\) 

\[\partial_t I_t = \sqrt{\rho}\langle v_t , \nabla I_t \rangle\]

Metamorphosis

Source

Target

LDDMM

Metamorphoses : Briefly

Exact matching formulation.

$$\left\{\begin{array}{rl}v_t &= - K_\sigma \star  (z_t \nabla I_t)\\ \dot z_t &= -\quad \nabla \cdot (z_t v_t)  \\ \dot I_t &= -\langle v_t , \nabla I_t\rangle +  z_t\end{array}\right.$$

Advection equation with source
Continuity equation

By computing the Euler-Lagrange equation of the exact matching cost :

 


and doing the variation with respect to \(I\) and \(v\) we obtain this set of geodesic equations:

 

[Trouvé & Younes, 2005]

$$ E_\mathrm M (I,v) =  \frac12\int_0^1 \|v_t\|_V^2 + \rho \|z_t\|_{L_2}^2  dt \quad s.t.\ I_0 = S, I_1 = T$$

advancement:

  1. Provide a stable and well-documented package.

  2. Theorize and implement Metamorphoses on the simplex.

  3. Control the parameters (displacement vs. reallocation/sampling).

  4. Rigid-registration preprocessing.

  5. Coupling Metamorphosis registration with rigid registration.

  6. Longitudinal analysis.

  7. GPU code optimization → enabling Metamorphoses at full-resolution data.

  8. Understanding the nature of the data → Modulated Metamorphoses.

Anisotropy Invariance 

\(\subset E\)

\(\Phi_{1,2}\)

\(\Phi_{2,3}\)

\(\Phi_{3,N}\)

\(\cdots\)

\(I_1\)

\(I_2\)

\(I_3\)

\(I_N\)

Registration scheme

\(\subset E\)

\(\Phi_{1,2}\)

\(\Phi_{2,3}\)

\(\Phi_{3,N}\)

\(\cdots\)

\(I_1\)

\(I_2\)

\(I_3\)

\(I_N\)

Registration scheme

\(\Phi_{1,2}\)

\(\Phi_{2,3}\)

\(\Phi_{3,N}\)

\(\cdots\)

\(I_1\)

\(I_2\)

\(I_3\)

\(I_N\)

Registration scheme

In conventional image registration, images are typically resampled to a common resolution. But:

  • Radiomic analyses are more robust when performed on native, non-resampled data.

  • Parameter stability is affected by changes in image resolution, and we aim to enable registration at lower resolutions without the need for extensive parameter re-tuning.

Sampling vs Model anisotropy:

=> We want Metamorphosis to be invariant to anisotropy

Stable by parameters

\(\Phi_{1,2}\)

\(\Phi_{2,3}\)

\(\Phi_{3,N}\)

\(\cdots\)

\(I_1\)

\(I_2\)

\(I_3\)

\(I_N\)

\(\cdots\)

\(\Omega_1\)

\(\Omega_2\)

\(\Omega_3\)

\(\Omega_N\)

\(\hat\Omega_1\)

\(\hat\Omega_2\)

\(\hat\Omega_3\)

\(\hat\Omega_N\)

\(\cdots\)

Registration scheme

\(\psi_1\)

\(\psi_2\)

\(\psi_3\)

\(\psi_N\)

\(A_{2,1}\)

\(A_{3,1}\)

\(A_{N,1}\)

\(\Phi_{k,l} = \varphi_{1,l} \cdot A_{k,1}\)

\(\subset \mathcal E\) : Espace Euclidien

New kernels :

AVNG / AS-ANG

New kernels :AVNG / AS-ANG

Anisotropric volume normalized Gaussian kernel
Let \(\sigma=(\sigma_h)_{1\leq h\leq d}\) be the standard deviation along the different coordinate in \(\mathbb R^d\) and \(B=B(0,1)\) the closed ball of radius 1.  We denote \(D=\text{diag}(\sigma_h^2)\) and we consider the kernel
$$K_{AVNG}(x,y)=\frac{1}{\mathrm{Vol}(D^{1/2} B)}\exp\left(-\frac{1}{2}\langle D^{-1}(x-y),(x-y)\rangle\right)D.$$
call the anisotropic volume normalized gaussian kernel (AVNG kernel).

$$K_{AS-ANG}(x,y) = \int_{0}^{k+1} K_{{AVNG}}(x,y;2^{-u}\sigma ) du$$

All Scales - Anisotropic Normalised Gaussian Kernel

is a continuous Integration of the \(K_{AVNG}\) kernel:

Success!

We can now register all scales at once!

New kernels :AVNG / AS-ANG

Doesn't work ...

New kernels :AVNG / AS-ANG

Everything is relative

\(\Phi_{1,2}\)

\(\Phi_{2,3}\)

\(\Phi_{3,N}\)

\(\cdots\)

\(I_1\)

\(I_2\)

\(I_3\)

\(I_N\)

Registration scheme

\(\Phi_{1,2}\)

\(\Phi_{2,3}\)

\(\Phi_{3,N}\)

\(\cdots\)

\(I_1\)

\(I_2\)

\(I_3\)

\(I_N\)

\(\hat\Omega_1\)

\(\hat\Omega_2\)

\(\hat\Omega_3\)

\(\hat\Omega_N\)

\(\cdots\)

Registration scheme

\(\Phi_{k,l} = \varphi_{k,l} \cdot A_{k,1}\)

\(\subset \mathcal E\) : Espace Euclidien

\(\cdots\)

\(\Omega_1\)

\(\Omega_2\)

\(\Omega_3\)

\(\Omega_N\)

\(\Omega^*\)

\(A_{2,*}\)

\(A_{3,*}\)

\(A_{N,*}\)

\(A_{1,*}\)

\(\Phi_{1,2}\)

\(\Phi_{2,3}\)

\(\Phi_{3,N}\)

\(\cdots\)

\(I_1\)

\(I_2\)

\(I_3\)

\(I_N\)

\(\cdots\)

\(\Omega_1\)

\(\Omega_2\)

\(\Omega_3\)

\(\Omega_N\)

\(\hat\Omega_1\)

\(\hat\Omega_2\)

\(\hat\Omega_3\)

\(\hat\Omega_N\)

\(\cdots\)

Registration scheme

\(\psi_1\)

\(\psi_2\)

\(\psi_3\)

\(\psi_N\)

\(A_{2,1}\)

\(A_{3,1}\)

\(A_{N,1}\)

\(\Phi_{k,l} = \varphi_{k,l} \cdot A_{k,1}\)

\(\subset \mathcal E\) : Espace Euclidien

\(\Omega^* =\)

    Let \(x\) be in \(\Omega_1\). We define the flow as the function

\[t \mapsto F_t(x) = \{ y | \Phi_{1,t} (x) = y\}\]

As \(\Phi_{k,l} = \varphi_{k,l} \circ A_{k,1}\) and \(\varphi\) and \(A\) are diffeomorphisms. We know that at each time the set is a singleton.

\[\forall t \in [1,M], \exist ! y \in \Omega_1, F_t(x) = y\]

     Let \(\hat x\) be in \(\hat \Omega_1\). We define the flow as the function

\[t \mapsto \hat F_t(x) = \{ y | \hat \Phi_{1,t} (x) = y\}\]

\(\Omega_k\)

\(\Omega_l\)

\(A_{k,l}\)

As \(\hat \Phi_{k,l} = \hat \varphi_{k,l} \circ \hat A_{k,1}\) and \(\hat \varphi\) and \(\hat A\) are only injectives. We have no garanties on the flow's cardinal.

\(\Phi_{k,l} : \Omega^* \to \Omega^*\)

\(\psi_k\)

\(\psi_l\)

\(\hat \Omega_k\)

\(\hat \Omega_l\)

\(\hat A_{k,l}\)

Solving anisotropy isometry using Riemanninan Geometry framework

\( \Omega\)

\(\hat \Omega\)

\( (M,g)\)

\( (\hat M, \hat g)\)

\(\psi\)

that induces the tangent morphism \( d\psi : TM \rightarrow T \hat M\)

We define two Riemannian spaces 

and a differentiable application \(\psi \)

\(g_p(u,v) = \langle u,v \rangle_{g_p} = \sum_{i,j} g_{ij} \, u^i v^j = \langle G u, v \rangle_{Id},\)
where \(G = (g_{ij})\) is the transport matrix at \(p\).

 

Définition de la métrique \(g\)

As we want \( \psi\) to be isometric

\(\langle u,v \rangle_{g(p)} = \langle u', v' \rangle_{\hat g(p')} \)

\( \langle u,v \rangle_{G(p)} =  \langle J u , J v\rangle_{\hat G(p')}  = u^\top J^\top \hat G(p') J v\)

\(J =d\psi_p\) the Jacobian matrix

\(\hat G(p') = (J^{-1})^{\top} G(p) J^{-1}\)

\( p' = \psi(p); \quad u,v \in T_p M; \quad u',v' \in T_{p'} \hat M; \quad u' = \psi_p(u); \quad v' = d\psi_p(v)\)

Riemanninan Geometry gives us principles on how operators are transported by \(\psi\)

In our case,

  •  \( M = \mathbb R^d\)
  •  \(g = \mathrm{Id}\) for all \(x \in M,\)
  • \( \hat g = \hat G\) for all \(p \in \hat M \)
  •  \(\psi(x) = Ax +b\).

Thus \(J = d \psi_p = A\) and \(\hat G = A^{-\top} A \)

  1. Dot product:
    \[ \langle u, v \rangle_g = \langle A u, Av \rangle_{\hat g} \]
  2. Gradient transformation:
    \[\nabla^{\hat g} (f\circ \psi^{-1}) = A^{-\top} \nabla f\]
  3. Divergence :
    \[ \mathrm{div}_{\hat g} \hat X = \frac{1}{\mathrm{det} A} \mathrm{div} X\]

\[\left\{\begin{array}{rl} \dot q & = - \langle \nabla^g q, v\rangle_g + z,\\ \dot p &= - \mathrm{div}_g(pv), \\ v &= -K(p \nabla^g q),\\ z &= p \end{array}\right.\]

\( \Omega \subset\)

\(\hat \Omega\subset\)

\( (M,g)\)

\( (\hat M, \hat g)\)

\(\psi\)

Invariance to Sampling: A Completed Milestone

Metamorphosis along Affine Registration

Collaboration with: Thomas PIERRON and Rayane MOUHLI

Classic Affine registration followed by non-linear one

State of the art approach

Classic Affine registration followed by non-linear one

Collaboration with: Thomas PIERRON and Rayane MOUHLI

State of the art approach

Classic Affine registration followed by non-linear one

Collaboration with: Thomas PIERRON and Rayane MOUHLI

State of the art approach

Classic Affine registration followed by non-linear one

Collaboration with: Thomas PIERRON and Rayane MOUHLI

State of the art approach

Collaboration with: Thomas PIERRON and Rayane MOUHLI

Our Method:

Combining affine and non-linear transforms in the deformation flow. 

2.1 A focus on the data

The standard \(n\)-Simplex is the subset of \(\mathbb R^{n+1}\) given by

$$\Delta^n = \left\{p \in \mathbb R^{n+1} : \forall i \in \{1,\cdots,n+1\}, p_i > 0; \sum_{i=1}^{n+1} p_i = 1\right\}.$$

A path on the 2-Simplex fig from [Jasminder, 2020]

Data from :

segmented MRI

Data Nature

Rigid alignment

Data from :

  • Cancerous Growth (red - orange)
  • White Matter Intensity reallocations (orange)
  • Ventricule expansion (gray)

Registration difficulties

Régions

  • WM (substance blanche)
  • GM (Substance grise)
  • Thalamus
  • Ventricules
  • Nécrose
  • GDE (Rehaussement annulaire)
  • Background

États

  • Oedème
  • Leucopathie
  • autres Hyperintensité de T1ce
  • Sain

WMH

\(\}\)

Show ventricules evolution 

2.2 Selective strategy for deformation VS Ré-allocations

Control allocation matrix

Table with the values of \(\rho\) to transition from one class to another.

\(R =\)

\((\)

\()\)

Up to now, the evolution of the image was described by:
\[\dot{q}_t = -\sqrt{\rho} \, v_t \cdot \nabla q_t + \sqrt{1 - \rho} \, z_t., \rho \in \mathbb R\]

Let \( R \) be the control allocation matrix (CAM), such that each entry \( R(i,j) \) indicates the value of \( \rho \) for the transition from class \( i \) to class \( j \).

For \( f, g \in \Delta^d \), we define:
\[\rho(x, f, g) = \sum_{i \in \mathcal{C}} \sum_{j \in \mathcal{C}} f^i g^j R(i,j) = \left\langle f, gR \right\rangle.\]

We then introduce a new dynamics:
\[\dot{q}_t = -\sqrt{\tilde{\rho}_t} \, v_t \cdot \nabla q_t + \sqrt{1 - \tilde{\rho}_t} \, z_t,\]
where \( \tilde{\rho}_t = \rho(x, q_t, T) \).

 

Adapative re-allocation control

Our system dynamics are governed by

    \[    \left\{    \begin{aligned}        \dot{q}_t &= -\sqrt{\tilde{\rho}} \, dq_t \cdot v_t + \sqrt{1 - \tilde{\rho}} \, z_t, \\        \left\langle z_t, q_t \right\rangle &= 0, \\        C(v, z) &= \frac{1}{2} \left( \|v\|_V^2 + \|z\|^2 \right),    \end{aligned} \right. \]

with

\[\tilde \rho = \rho(x, q, T) = \sum_{i \leq d} \sum_{j \leq d} q^i T^j R(i,j) = \left\langle q, RT \right\rangle.\]

we derive the Hamiltonian

\[    H(q,p,v,z,\lambda) = \left( p \mid -\sqrt{\tilde{\rho}} \, dq_t \cdot v_t + \sqrt{1 - \tilde{\rho}} \, z \right)    - \frac{1}{2} \|v\|^2 - \frac{1}{2} \|z\|^2 - \lambda \left\langle z, q \right\rangle.\]

Hamiltonian

\[\left\{\begin{aligned}\lambda &= \frac{\left\langle \sqrt{1 - \tilde{\rho}} \, p, q \right\rangle}{\left\langle q, q \right\rangle} \\v &= -K_\sigma \ast \left( \sqrt{ \tilde{\rho} } \sum_{n=1}^{N+1} p_{n} \cdot \nabla q_{n} \right) \\z &= \sqrt{1 - \tilde{\rho}} \, p - \lambda q = \Pi_{\mathbb{R}_{q^\perp}}(\sqrt{1 - \tilde{\rho}} \, p) \\    \dot{q}_t &= -\sqrt{\tilde{\rho}} \, dq_t \cdot v_t + \sqrt{1 - \tilde{\rho}} \, z_t\\    \dot{p} &=  - \mathbf{div}(\sqrt{\tilde{\rho}} pv^T)- \left\langle p,\frac{dq(v)}{2 \sqrt{\tilde{\rho}}}+ \frac{z}{2 \sqrt{1 - \tilde{\rho}}} \right\rangle RT    - \lambda z\end{aligned}\right.\]

The geodesic equations associated to the Hamiltonian 

\[    H(q,p,v,z,\lambda) = \left( p \mid -\sqrt{\tilde{\rho}} \, dq_t \cdot v_t + \sqrt{1 - \tilde{\rho}} \, z \right)    - \frac{1}{2} \|v\|_V^2 - \frac{1}{2} \|z\|_2^2 - \lambda \left\langle z, q \right\rangle.\]

are

Geodesics

RADIO-AIDE-final

By Anton FRANCOIS

RADIO-AIDE-final

  • 27