Weighted Metamorphosis

For registration of images with different topologies.

Anton François

supervised by

Joan Glaunès & Pietro Gori

The Registration Problem

The Registration Problem

  • Necrosis : topological difference
  • Mass effect : morphological difference
  • Oedema : appearance difference 
  • Brain natural differences

MNI template

The Registration Problem

Metamorphosis & LDDMM

We aim at finding \( (v_t)_{t\in [0,1]}\) and \( (z_t)_{t \in [0,1]}\) which minimise

$$ E(I,v) = \frac 12 \| I_1 - T \|_{L^2}^2 + Reg(\bullet)$$

$$\quad s.t.: \dot I_t = -\langle \nabla I_t, v_t \rangle + \mu z_t, \quad I_0 = S, \mu \in \mathbb R^+$$

 

Metamorphosis : LDDMM + Intensity changes

LDDMM : Register objects with the help of diffeomorphic deformations inducing a metric between images.

Metamorphosis & LDDMM

$$\left\{\begin{array}{rl}v_t &= -\frac{\rho}{\mu} K_\sigma \star  (z_t \nabla I_t)\\ \dot z_t &= -\quad \nabla \cdot (z_t v_t)  \\ \dot I_t &= -\langle v_t , \nabla I_t\rangle + \mu z_t\end{array}\right.$$

Advection equation
Continuity equation

To find the minimum of this cost :
$$ E_\mathrm M (I,v) = \frac12 \left\| I_1 - T \right\|_2^2 + \frac12\int_0^1 \|v_t\|_V^2 + \rho \|z_t\|_{L_2}^2  dt $$
We do geodesic shooting, integrating over this set of geodesic equations :

 

Source

Target

LDDMM

Metamorphsosis

Weighted Metamorphosis

$$\left\{\begin{array}{rl}v_t &= -\frac{\rho}{\mu} K_\sigma \star  (z_t \nabla I_t)\\ \dot z_t &= -\quad \nabla \cdot (z_t v_t)  \\ \dot I_t &= -\langle v_t , \nabla I_t\rangle + \mu M_t z_t\end{array}\right.$$

Let \((M_t)_{t\in [0,1]}\) be a continuous temporal mask.

To find the minimum of this cost :
$$ E_{\mathrm{WM}}(I,v) = \frac12 \left\| I_1 - T \right\|_2^2 + \frac12\int_0^1 \|v_t\|_V^2 + \rho \langle z_t, M_t z_t \rangle_{L^2}  dt $$
We have to integrate over the set of geodesic equations :

 

Source

Target

LDDMM

Metamorphsosis

WM

Weighted Metamorphosis

with a growing mask.

1. We set \(M_1\) as the topological difference segmentation.

2. We initialise \(M_0\) as a small ball at its center.

3. We register \(M_0\) to \(M_1\) using LDDMM.

Source

Target

WM

WM w. Growing mask

Real data :

Results in 3D

Target

Target

github.com/antonfrancois/Demeter_metamorphosis

Good for registering object with a growing topology change.

A bit slower than DL methods at inference time.

Works on individual images.

WBIR-WM

By Anton FRANCOIS

WBIR-WM

  • 45