PyMKS

Daniel Wheeler

What is PyMKS?

  • Developed with Surya Kalidindi's group at GT
  • ML library for microstrucutres
  • Uses
    • Localization
    • Homogenization
    • Graph based techniques
  • Existential question when compared with neural nets
  • Mostly using synthetic microstructures and building surrogate models
  • Parallel + out of memory computations

Data

  • Synthetic binary microstructures
  • 8900 samples of 51x51x51
  • Volume fraction from 25% to 75%
  • 4 categories

Metamodel

n \Delta t

model

metamodel

Homogenization

Localization

Microstructure

Response

1% displacement

Channel 1

Channel 2

Channel 3

Microstructure Function

2-Point Statistics

Microstructure Function

 

 

  • Account for the stochastic nature of the local state
  • Unified representation of the microstructure
  • Create different mappings for different states
def get_model():
    return Pipeline([
        ('reshape', GenericTransformer(
            lambda x: x.reshape(x.shape[0], 51, 51,51)
        )),
        ('discritize', PrimitiveTransformer(n_state=2, min_=0.0, max_=1.0)),
        ('correlations', TwoPointCorrelation(periodic_boundary=True, correlations=[(0, 0)])),
        ('flatten', GenericTransformer(lambda x: x.reshape(x.shape[0], -1))),
        ('pca', PCA(n_components=3, svd_solver='randomized')),#
        ('poly', PolynomialFeatures(degree=4)),
        ('regressor', LinearRegression(solver_kwargs={"normalize":False}))
    ])
  • All steps are Dask ML components

Pipeline

Graphs and Chunks

Samples v Features

\begin{pmatrix} \begin{matrix} m_{11} & m_{12} & \cdots & \cdots & \cdots & m_{1n} \\ m_{21} & m_{22} & \cdots & \cdots & \cdots & m_{2n} \\ \vdots & \vdots & \ddots & & & \vdots \\ \vdots & \vdots & & \ddots & & \vdots \\ \vdots & \vdots & & & \ddots & \vdots \\ m_{l1} & m_{l2} & \cdots & \cdots & \cdots & m_{ln} \end{matrix} \end{pmatrix}
\begin{pmatrix} \begin{matrix} r_{1} \\ r_{2} \\ \vdots \\ \vdots \\ \vdots \\ r_{l} \end{matrix} \end{pmatrix}

Samples

Features

Microstructure

Response

Make New Features

\begin{pmatrix} \begin{matrix} m_{11} & m_{12} & \cdots & \cdots & \cdots & m_{1n} \\ m_{21} & m_{22} & \cdots & \cdots & \cdots & m_{2n} \\ \vdots & \vdots & \ddots & & & \vdots \\ \vdots & \vdots & & \ddots & & \vdots \\ \vdots & \vdots & & & \ddots & \vdots \\ m_{l1} & m_{l2} & \cdots & \cdots & \cdots & m_{ln} \end{matrix} \end{pmatrix}

New features

n \gg l

Dimensionality Reduction

\begin{pmatrix} \begin{matrix} m_{11} & m_{12} & \cdots & \cdots & \cdots & m_{1n} \\ m_{21} & m_{22} & \cdots & \cdots & \cdots & m_{2n} \\ \vdots & \vdots & \ddots & & & \vdots \\ \vdots & \vdots & & \ddots & & \vdots \\ \vdots & \vdots & & & \ddots & \vdots \\ m_{l1} & m_{l2} & \cdots & \cdots & \cdots & m_{ln} \end{matrix} \end{pmatrix}

Reduce features

l \gg n
n \gg l

Learning

\begin{pmatrix} \begin{matrix} m_{11} & m_{12} & \cdots & \cdots & \cdots & m_{1n} \\ m_{21} & m_{22} & \cdots & \cdots & \cdots & m_{2n} \\ \vdots & \vdots & \ddots & & & \vdots \\ \vdots & \vdots & & \ddots & & \vdots \\ \vdots & \vdots & & & \ddots & \vdots \\ m_{l1} & m_{l2} & \cdots & \cdots & \cdots & m_{ln} \end{matrix} \end{pmatrix}
l \gg n
\begin{pmatrix} \begin{matrix} r_{1} \\ r_{2} \\ \vdots \\ \vdots \\ \vdots \\ r_{l} \end{matrix} \end{pmatrix}

Microstructure

Response

Microstructure

s = [0, 0]
s = [1, 0]
s = [2, 0]
s = [2, 1]
s = [1, 1]
s = [0, 1]
s = [0, 2]
s = [1, 2]
s = [2, 2]
\phi_k(\vec{s})

continuous:

discrete:

\phi_k[[i, j]]
\phi_k[[0, 0]] = 0
\phi_k[[0, 2]] = 1

categorical data

Microstructure

s = [0, 0]
s = [1, 0]
s = [2, 0]
s = [2, 1]
s = [1, 1]
s = [0, 1]
s = [0, 2]
s = [1, 2]
s = [2, 2]
\phi_k[[0, 1]] = 0.9
\phi_k[[0, 2]] = 0.1

continuous data

Microstructure Function

\phi_k(\vec{s})
m_k(h; \vec{s})
\phi_k(\vec{s}) = \int_H h \; m_k(h; \vec{s}) \; dh
\int_H m_k(h; \vec{s}) \; dh = 1
m_k(h; \vec{s}) = \delta(h - \phi_k(\vec{s}))

Microstructure Function

\phi_k[s]
m_k[h; s]
m_k[h; s] = \delta[h - \phi_k[s]]
\delta [x] = \max \left( 1 - \left|\frac{x}{\Delta h}\right|, 0 \right)

Microstructure Function

s = [0, 0]
s = [1, 0]
s = [2, 0]
s = [2, 1]
s = [1, 1]
s = [0, 1]
s = [0, 2]
s = [1, 2]
s = [2, 2]
\phi_0[[0, 2]] = 1 \;\;\; m_0[0; [0, 2]] = 0
\phi_0[[0, 2]] = 1 \;\;\; m_0[1; [0, 2]] = 1
\phi_0[[0, 0]] = 0 \;\;\; m_0[0; [0, 0]] = 1
\phi_0[[0, 0]] = 0 \;\;\; m_0[1; [0, 0]] = 0

2-Point Stats

s = [0, 0]
s = [1, 0]
s = [2, 0]
s = [2, 1]
s = [1, 1]
s = [0, 1]
s = [0, 2]
s = [1, 2]
s = [2, 2]
f_k[h, h';r] = \frac{1}{\Omega_j[s]} \sum_{s \in S} m_k[h; s] m_k[h'; s + r]
f_0[0, 0; [0, 0]] = 5 / 9
f_0[1, 1; [0, 0]] = 4 / 9
f_0[0, 1; [0, 0]] = 0 / 9
f_0[1, 0; [2, -1]] = 3 / 9
f_0[1, 1; [2, -1]] = 1 / 9

Copy of PyMKS Tutorial

By Daniel Wheeler

Copy of PyMKS Tutorial

  • 426