Large deviations of the giant in spatial random graphs
Joost Jorritsma
joint with Júlia Komjáthy, Dieter Mitsche



Long-range phenomena in percolation, September '24
Supercritical bond percolation on Zd

[Gandolfi '88, Grimmett & Marstrand '90, Kesten & Zhang '90, Pisztora '96]
Surface-tension driven behavior
The largest component

Soft Poisson Boolean model
Edge set E∞
- {u↔v}⟺{wu1/d+wv1/d≥∥xu−xv∥}
- Long-range parameter α>1,
- Percolation p∈(0,1]
Connection probability
P(u↔v∣V∞)=p(∥xu−xv∥wu1/d+wv1/d∧1)αd
P(u↔v∣V∞)=p(∥xu−xv∥wu1/d+wv1/d∧1)αd
Vertex set V∞
- Locations: Poisson point process intensity β>0
- Power-law i.i.d. weights τ>2:
P(wv≥w)=w−(τ−1), w≥1
P(u↔v∣V∞)=p(∥xu−xv∥wu1/d+wv1/d∧1)αd




(deg(v)∣wv=w)=Poi(cα,d,τpβ⋅w)
Soft Poisson Boolean model




Supercriticality assumption
- θ=θd,τ,α,p(β):=Pd,τ,α,p,β0(0↔∞)
- β>βc(α,τ,d,p)=inf{β:θ(β)>0}
Edge set E∞
- {u↔v}⟺{wu1/d+wv1/d≥∥xu−xv∥}
- Long-range parameter α>1,
- Percolation p∈(0,1]
Vertex set V∞
- Locations: Poisson point process intensity β>0
- Power-law i.i.d. weights τ>2:
P(wv≥w)=w−(τ−1), w≥1
Soft Poisson Boolean model
Questions:
Fixed parameters:
- Point process on Rd intensity β>0
- Power-law exponent τ>2
- Long-range parameter α>1
- Percolation p∈(0,1]
[Gracar, Lüchtrath, Mönch '21]
- When is βc<∞?
- d≥2,
- Size of the largest connected component ∣Cn(1)∣
- Law of large numbers (∣Cn(1)∣/n→θ)?
- surface-tension behav. in P(∣Cn(1)∣/n<θ−ε)?
- exponential decay of P(∣Cn(1)∣/n>θ+ε)?
or d=1, and α∈(1,2∨ατ)



Power-law weights
Constant weights
Lower tail*:
If E[#edges of length n1/d]→∞
Main result: large deviations for the giant component
*log-corrections at phase transition
Upper tail:
If non-critical
*at continuity points of I(θ+ε)
Biskup ['04]
Lower tail: a too small largest component

Goal 1:
+ local convergence (Giant is almost local)
[vdHofstad, vdHoorn, Maitra '21, vd Hofstad '21]
Goal 2: Prove the theorem
Bootstrapping: Goal 1 proved via method Goal 2
Edge set E∞
- Long-range parameter α>1,
- Percolation p∈(0,1]
Connection probability
Vertex set V∞
- Locations: Poisson point process intensity β>0
- Power-law i.i.d. weights τ>2:
P(wv≥w)=w−(τ−1), w≥1
P(u↔v∣V∞)=p(∥xu−xv∥wu1/d+wv1/d∧1)αd




Goal 2 Prove


Power-law weights
Constant weights
Lower tail*:
If E[#edges of length n1/d]→∞
Main result: large deviations for the giant component
*log-corrections at phase transition
Upper tail:
If non-critical
*at continuity points of I(θ+ε)
Upper tail: polynomial decay when τ<∞

Related work:
- Sum of iid Par(τ): principle of single jump.
- Large deviations # edges En (vdHvdHKMM '24)
P(En>E[En]+nν)=∗(1+o(1))cνn−(τ−2)⌈ν⌉. - Inhomogeneous random graphs (J., Zwart '24+)
P(∣Cn(1)∣/n>ρ)=∗(1+o(1))Cρn−(τ−2)⌈h(ρ)⌉.
P(u↔v∣V∞)=p(∥xu−xv∥dwu1/d+wv1/d∧1)dα
Challenge: Capture dependency on percolation p



Geom. inhom. RG
Long-range percolation
Lower tail*:
If E[#edges of length n1/d]→∞
Main result: large deviations for the giant component
*log-corrections at phase transition
Upper tail:
If non-critical, ρ∈(θ,1)
*at continuity points of I(ρ)
Thank you!

-
Cluster-size decay in supercritical long-range percolation;
With Júlia Komjáthy, Dieter Mitsche;
Electronic Journal of Probability (2024). -
Cluster-size decay in supercritical KSRGs;
With Júlia Komjáthy, Dieter Mitsche;
Preprint arXiv: 2303.00712. -
Large deviations of the giant in supercritical KSRGs;
With Júlia Komjáthy, Dieter Mitsche;
Preprint arXiv: 2404.02984.
Kernel-based spatial random graphs
Vertex set V∞
- Spatial locations xv∈Rd: PPP(1),
- i.i.d. weights wv≥1: Pareto(τ),
Edge set E∞
- Symmetric kernel κ(w1,w2),
- Edge-density β>0,
- Long-range parameter α>1,
Connection probability
P(u↔v∣V∞)=(β∥xu−xv∥dκ(wu,wv))α∧1
Vertex set V∞
- Spatial locations xv∈Rd: PPP(1), or Zd,
- i.i.d. weights wv≥1: P(wv≥w)=w−(τ−1),
Edge set E∞
- Symmetric kernel κ(w1,w2),
- Edge-density β>0,
- Long-range parameter α>1,



Geom. Inhom. RG

Hyperbolic RG

Geom. RG

Long-range perc.

Scale-free Gilbert RG

Age-dependent RCM
Theorem. When τ<2 or α<1:
- Infinite degrees
- Bounded diameter
[Deijfen, v.d. Hofstad, Hooghiemstra '13], [Gracar, Grauer, Lüchtrath, Mörters '18]
[Heydenreich, Hulshof, J. '17], [Hirsch '17], [v.d. Hofstad, v.d. Hoorn, Maitra '22],
[J., Komjáthy, Mitsche, '23], [Lüchtrath '22]
Theorem. When τ>2 and α>1:
P(deg(0)≥k)∼k−(τ−1).
τ small: many hubs
α small: many long edges
The interpolating kernel
Connection probability
P(u↔v∣V∞)=(β∥xu−xv∥dκ(wu,wv))α∧1
A parameterized kernel: σ≥0
κσ(wu,wv):=max{wu,wv}min{wu,wv}σ
- τ:P(wv≥w)=w−(τ−1).
- σ: assortativity
- σ: interpolation

SFP/GIRG

Hyperbolic RG


Age-dep. RCM
Scale-free Gilbert



Long-range percolation
Random geom. graph
Nearest-neighbor percolation
Remarks.
- ζ∗<0: subcritical*
-
d≥2:
- (d−1)/d
- partial results: upper bounds
- Product kernel: 2nd term

No known results
- ∣largest∣/n
- 2nd-largest
Example 1:
Scale-free Gilbert RG in d=1
Power-law degrees: τ>2

d≥2
* [Gracar, Lüchtrath, Mönch '22]
Theorem. (J., Komjáthy, Mitsche '23+)
Set
If ζ∗>0, then LLN for ∣largest∣, and
Long-range parameter: α>1
κmax=wu∨wv

κprod=wuwv
Example 2:
Geom. Inhomog. RG in d=1
Lower bounds: cluster-size decay
Aim: Find minimal ζ s.t.
Aim: Find γ s.t.
Lower bounds: cluster-size decay
Aim: Find minimal ζ s.t.
Aim: Find γ s.t.
Lower bounds: large deviations
(FKG)




Lower bounds: ∣Cn(2)∣
δ small
Kernel-based spatial random graphs
Vertex set V∞
-
Spatial locations, either
- Lattice Zd
- Poisson point process (unit intensity)
- Power-law i.i.d. weights wv≥1:
P(wv≥w)=w−(τ−1),

Upper bound: ∣Cn(2)∣












Soft Poisson Boolean model
Long-range percolation
Bond percolation on Zd
Lower tail:
- surface tension
- vertex boundary
Long-range percolation
Vertex set V∞
-
Spatial locations, either
- Lattice Zd
- Poisson point process (unit intensity)

Edge set E∞
- Long-range parameter α>1,
- Edge-density β>0,
- Percolation p∈(0,1]
Connection probability
P(u↔v∣V∞)=p(∥xu−xv∥dβ∧1)α
P(u↔v∣V∞)=p(∥xu−xv∥dβ∧1)α
P(u↔v∣V∞)=p(∥xu−xv∥dβ∧1)α
P(u↔v∣V∞)=p(∥xu−xv∥dβ∧1)α
P(u↔v∣V∞)=p(∥xu−xv∥d1)α∧1
P(u↔v∣V∞)=p(∥xu−xv∥d1∧1)α



Soft Poisson Boolean model


Edge set E∞
- Long-range parameter α>1,
- Percolation p∈(0,1]
Connection probability
P(u↔v∣V∞)=p(∥xu−xv∥wu1/d+wv1/d∧1)αd
Vertex set V∞
- Spatial locations: Poisson point process intensity β>0
- Power-law i.i.d. weights wv≥1:
P(wv≥w)=w−(τ−1),
P(u↔v∣V∞)=p(∥xu−xv∥wu1/d+wv1/d∧1)αd
P(u↔v∣V∞)=p(∥xu−xv∥wu1/d+wv1/d∧1)αd
Kernel-based spatial random graphs
Edge set E∞
- Long-range parameter α>1,
- Edge-density β>0,
- Percolation p∈(0,1]


Connection probability
Vertex set V∞
-
Spatial locations, either
- Lattice Zd
- Poisson point process (unit intensity)
- Power-law i.i.d. weights wv≥1:
P(wv≥w)=w−(τ−1),
P(u↔v∣V∞)=p(∥xu−xv∥dβ⋅(wu⋅wv)∧1)α


Geom. inhom. RG
Long-range percolation
Lower tail*:
If E[#edges of length n1/d]→∞
Remainder: Lower tail LRP - Upper tail GIRG
*log-corrections at phase transition
Upper tail:
If non-critical, ρ∈(θ,1)
*at continuity points of I(ρ)
(Second-)largest component in supercritical spatial random graphs
- Cluster-size decay
- Second-largest component
Open problems:
-
Largest component:
- Linear in box size
- Law of large numbers
- Large deviations
Answered questions (d=1)
- Phase transition boundaries.
- Partial results d≥2
- Extension from PPP to grid
- Central limit theorem






- ζ∈[(d−1)/d,1)
Lower bounds
Upper bounds




Small
Large
Lower bounds
Upper bounds

Lower bounds
Upper bounds
Lower bounds
Upper bounds

Remarks.
- ζ∗<0: subcritical*
-
d≥2:
- (d−1)/d
- partial results: upper bounds
- Product kernel: 2nd term
Power-law degrees: τ>2
d≥2
* [Gracar, Lüchtrath, Mönch '22]
Theorem. (J., Komjáthy, Mitsche '23+)
Set
If ζ∗>0, then LLN for ∣largest∣, and
Long-range parameter: α>1

Example 2:
Geom. Inhomog. RG in d=1






Hyperbolic random graph
Scale-free percolation
Long-range percolation
Scale-free Gilbert RG
Random geom. graph
Nearest-neighbor percolation

Largest component in spatial inhomogeneous random graphs
By joostjor
Largest component in spatial inhomogeneous random graphs
- 166