Klas Modin PRO
Mathematician at Chalmers University of Technology and the University of Gothenburg
Invariant Riemannian metric on \(E\)
\(\Rightarrow\) \(\pi\) Riemannian submersion
Invariant Riemannian metric on \(E\)
\(\Rightarrow\) \(\pi\) Riemannian submersion
left co-sets \([g] = g\cdot H \)
Semi-invariant Riemannian metric on \(G\)
\(\Rightarrow\) \(\pi\) Riemannian submersion
left co-sets \([g] = g\cdot G_{b_0} \)
Semi-invariant Riemannian metric on \(G\)
\(\Rightarrow\) \(\pi\) Riemannian submersion
right co-sets \([g] = G_{b_0}\cdot g \)
Semi-invariant Riemannian metric on \(G\)
\(\Rightarrow\) \(\pi\) Riemannian submersion
left co-sets \([g] = g\cdot G_{b_0} \)
Semi-invariant Riemannian metric on \(G\)
\(\Rightarrow\) \(\pi\) Riemannian submersion
left co-sets \([g] = g\cdot G_{b_0} \)
Semi-invariant Riemannian metric on \(G\)
\(\Rightarrow\) \(\pi\) Riemannian submersion
left co-sets \([g] = g\cdot G_{b_0} \)
Semi-invariant Riemannian metric on \(G\)
\(\Rightarrow\) \(\pi\) Riemannian submersion
left co-sets \([g] = g\cdot G_{b_0} \)
Semi-invariant Riemannian metric on \(G\)
\(\Rightarrow\) \(\pi\) Riemannian submersion
left co-sets \([g] = g\cdot G_{b_0} \)
Semi-invariant Riemannian metric on \(G\)
\(\Rightarrow\) \(\pi\) Riemannian submersion
left co-sets \([g] = g\cdot G_{b_0} \)
Semi-invariant Riemannian metric on \(G\)
\(\Rightarrow\) \(\pi\) Riemannian submersion
left co-sets \([g] = g\cdot G_{b_0} \)
Semi-invariant Riemannian metric on \(G\)
\(\Rightarrow\) \(\pi\) Riemannian submersion
polar cone
right co-sets \([g] = g\cdot G_{b_0} \)
Semi-invariant Riemannian metric on \(G\)
\(\Rightarrow\) \(\pi\) Riemannian submersion
polar cone
Monge problem, \(L^2\) version
Monge problem, \(L^2\) version
Riemannian metric
Induced metric
[Benamou & Brenier (2000), Otto (2001)]
Invariance: \(\eta\in\mathrm{Diff}_{\mu_0}(M)\)
Geodesic equation:
Easy to prove:
Polar cone \(K\) is isomorphic to strictly convex smooth functions via \(\phi \mapsto \nabla\phi\)
Hard to prove:
Polar cone \(K\) a section of principal bundle
Geodesic equation:
Easy to prove:
Polar cone \(K\) is isomorphic to strictly convex smooth functions via \(\phi \mapsto \nabla\phi\)
Hard to prove:
Polar cone \(K\) a section of principal bundle
Brenier's decomposition of transport maps
Geodesic curve:
In particular:
Geodesic curve:
In particular:
Geodesic curve:
In particular:
Trivial observation: \(\varphi_0(x) = A_0 x\), \(\varphi_1(x) = A_1 x\) linear diffeomorphisms \(\Rightarrow\) geodesic consists of linear diffeomorphisms
Consequence: \(GL(n)\) is totally geodesic subgroup of \(\operatorname{Diff}(\mathbb{R}^n)\)
Corresponding subspace of densities (statistical submanifold): multivariate Gaussians with zero mean
Monge-Ampere equation:
Factorization theorem:
Vertical gradient flow:
Vertical gradient flow:
Vertical gradient flow:
Horizontal gradient (heat) flow:
Relative entropy
(Kullback-Leibler)
Horizontal gradient (heat) flow:
Relative entropy
(Kullback-Leibler)
Horizontal gradient (heat) flow:
Lifted gradient flow on \(K\) for
Horizontal gradient (heat) flow:
Lifted gradient flow on \(K\) for
Hessian of \(F(P)\) strictly positive on \(K\) \(\Rightarrow\) unique limit!
Horizontal gradient (heat) flow:
Lifted gradient flow on \(K\) for
Hessian of \(F(P)\) strictly positive on \(K\) \(\Rightarrow\) unique limit!
Horizontal gradient (heat) flow:
Lifted gradient flow on \(K\) for
Hessian of \(F(P)\) strictly positive on \(K\) \(\Rightarrow\) unique limit!
Horizontal gradient (heat) flow:
Lifted gradient flow on \(K\) for
Hessian of \(F(P)\) strictly positive on \(K\) \(\Rightarrow\) unique limit!
Wasserstein
Fisher-Rao
Dependent on Riemannian structure of \(M\)
Independent of Riemannian structure of \(M \Rightarrow \mathrm{Diff}(M)\)-invariance
Requirement for compatible metric on \(GL(n)\) :
Requirement for compatible metric on \(GL(n)\) :
Requirement for compatible metric on \(GL(n)\) :
\(\mathrm{Hor}_I = \) upper triangular matrices
Requirement for compatible metric on \(GL(n)\) :
\(\mathrm{Hor}_I = \) upper triangular matrices
Lie subalgebra \(\Rightarrow\) \(\mathrm{Hor}\) is integrable
Requirement for compatible metric on \(GL(n)\) :
\(\mathrm{Hor}_I = \) upper triangular matrices
Lie subalgebra \(\Rightarrow\) \(\mathrm{Hor}\) is integrable
\(K=\) subgroup of upper triangular matrices with positive entries on diagonal
Requirement for compatible metric on \(GL(n)\) :
\(\mathrm{Hor}_I = \) upper triangular matrices
Lie subalgebra \(\Rightarrow\) \(\mathrm{Hor}\) is integrable
\(K=\) subgroup of upper triangular matrices with positive entries on diagonal
Requirement for compatible metric on \(GL(n)\) :
\(\mathrm{Hor}_I = \) upper triangular matrices
Lie subalgebra \(\Rightarrow\) \(\mathrm{Hor}\) is integrable
\(K=\) subgroup of upper triangular matrices with positive entries on diagonal
Requirement for compatible metric on \(GL(n)\) :
\(\mathrm{Hor}_I = \) upper triangular matrices
Lie subalgebra \(\Rightarrow\) \(\mathrm{Hor}\) is integrable
\(K=\) subgroup of upper triangular matrices with positive entries on diagonal
Requirement for compatible metric on \(GL(n)\) :
\(\mathrm{Hor}_I = \) upper triangular matrices
Lie subalgebra \(\Rightarrow\) \(\mathrm{Hor}\) is integrable
\(K=\) subgroup of upper triangular matrices with positive entries on diagonal
Relative entropy
Right action by \((Q,W)\mapsto Q^\top W Q \), clearly not free!
Geodesic equation on \(D(n)\):
\(D(n)\) is totally geodesic submanifold!
Notice: \(D(n)\) intersects \(W_1\)-orbit \(n!\) times
( \(D(n)\) an \(n!\)-covering of \(\mathrm{poly}_n^+\) )
Geodesic equation on \(D(n)\):
\(D(n)\) is totally geodesic submanifold!
Notice: \(D(n)\) intersects \(W_1\)-orbit \(n!\) times
( \(D(n)\) an \(n!\)-covering of \(\mathrm{poly}_n^+\) )
\(H_N(W)\) relative entropy functional
Functional \(F(Q) = H_N(Q^\top W_1 Q)\) on \(O(n)\)
Reference:
Slides available at: slides.com/kmodin
By Klas Modin
Online-presentation given 2020-12 in the Hamiltonian Seminar Series, University of Toronto.
Mathematician at Chalmers University of Technology and the University of Gothenburg