Klas Modin PRO
Mathematician at Chalmers University of Technology and the University of Gothenburg
Invariant Riemannian metric on E
⇒ π Riemannian submersion
Invariant Riemannian metric on E
⇒ π Riemannian submersion
left co-sets [g]=g⋅H
Semi-invariant Riemannian metric on G
⇒ π Riemannian submersion
left co-sets [g]=g⋅Gb0
Semi-invariant Riemannian metric on G
⇒ π Riemannian submersion
right co-sets [g]= Gb0⋅g
Semi-invariant Riemannian metric on G
⇒ π Riemannian submersion
left co-sets [g]=g⋅Gb0
Semi-invariant Riemannian metric on G
⇒ π Riemannian submersion
left co-sets [g]=g⋅Gb0
Semi-invariant Riemannian metric on G
⇒ π Riemannian submersion
left co-sets [g]=g⋅Gb0
Semi-invariant Riemannian metric on G
⇒ π Riemannian submersion
left co-sets [g]=g⋅Gb0
Semi-invariant Riemannian metric on G
⇒ π Riemannian submersion
left co-sets [g]=g⋅Gb0
Semi-invariant Riemannian metric on G
⇒ π Riemannian submersion
left co-sets [g]=g⋅Gb0
Semi-invariant Riemannian metric on G
⇒ π Riemannian submersion
left co-sets [g]=g⋅Gb0
Semi-invariant Riemannian metric on G
⇒ π Riemannian submersion
polar cone
right co-sets [g]=g⋅Gb0
Semi-invariant Riemannian metric on G
⇒ π Riemannian submersion
polar cone
Monge problem, L2 version
Monge problem, L2 version
Riemannian metric
Induced metric
[Benamou & Brenier (2000), Otto (2001)]
Invariance: η∈Diffμ0(M)
Geodesic equation:
Easy to prove:
Polar cone K is isomorphic to strictly convex smooth functions via ϕ↦∇ϕ
Hard to prove:
Polar cone K a section of principal bundle
Geodesic equation:
Easy to prove:
Polar cone K is isomorphic to strictly convex smooth functions via ϕ↦∇ϕ
Hard to prove:
Polar cone K a section of principal bundle
Brenier's decomposition of transport maps
Geodesic curve:
In particular:
Geodesic curve:
In particular:
Geodesic curve:
In particular:
Trivial observation: φ0(x)=A0x, φ1(x)=A1x linear diffeomorphisms ⇒ geodesic consists of linear diffeomorphisms
Consequence: GL(n) is totally geodesic subgroup of Diff(Rn)
Corresponding subspace of densities (statistical submanifold): multivariate Gaussians with zero mean
Monge-Ampere equation:
Factorization theorem:
Vertical gradient flow:
Vertical gradient flow:
Vertical gradient flow:
Horizontal gradient (heat) flow:
Relative entropy
(Kullback-Leibler)
Horizontal gradient (heat) flow:
Relative entropy
(Kullback-Leibler)
Horizontal gradient (heat) flow:
Lifted gradient flow on K for
Horizontal gradient (heat) flow:
Lifted gradient flow on K for
Hessian of F(P) strictly positive on K ⇒ unique limit!
Horizontal gradient (heat) flow:
Lifted gradient flow on K for
Hessian of F(P) strictly positive on K ⇒ unique limit!
Horizontal gradient (heat) flow:
Lifted gradient flow on K for
Hessian of F(P) strictly positive on K ⇒ unique limit!
Horizontal gradient (heat) flow:
Lifted gradient flow on K for
Hessian of F(P) strictly positive on K ⇒ unique limit!
Wasserstein
Fisher-Rao
Dependent on Riemannian structure of M
Independent of Riemannian structure of M⇒Diff(M)-invariance
Requirement for compatible metric on GL(n) :
Requirement for compatible metric on GL(n) :
Requirement for compatible metric on GL(n) :
HorI= upper triangular matrices
Requirement for compatible metric on GL(n) :
HorI= upper triangular matrices
Lie subalgebra ⇒ Hor is integrable
Requirement for compatible metric on GL(n) :
HorI= upper triangular matrices
Lie subalgebra ⇒ Hor is integrable
K= subgroup of upper triangular matrices with positive entries on diagonal
Requirement for compatible metric on GL(n) :
HorI= upper triangular matrices
Lie subalgebra ⇒ Hor is integrable
K= subgroup of upper triangular matrices with positive entries on diagonal
Requirement for compatible metric on GL(n) :
HorI= upper triangular matrices
Lie subalgebra ⇒ Hor is integrable
K= subgroup of upper triangular matrices with positive entries on diagonal
Requirement for compatible metric on GL(n) :
HorI= upper triangular matrices
Lie subalgebra ⇒ Hor is integrable
K= subgroup of upper triangular matrices with positive entries on diagonal
Requirement for compatible metric on GL(n) :
HorI= upper triangular matrices
Lie subalgebra ⇒ Hor is integrable
K= subgroup of upper triangular matrices with positive entries on diagonal
Relative entropy
Right action by (Q,W)↦Q⊤WQ, clearly not free!
Geodesic equation on D(n):
D(n) is totally geodesic submanifold!
Notice: D(n) intersects W1-orbit n! times
( D(n) an n!-covering of polyn+ )
Geodesic equation on D(n):
D(n) is totally geodesic submanifold!
Notice: D(n) intersects W1-orbit n! times
( D(n) an n!-covering of polyn+ )
HN(W) relative entropy functional
Functional F(Q)=HN(Q⊤W1Q) on O(n)
Reference:
Slides available at: slides.com/kmodin
By Klas Modin
Online-presentation given 2020-12 in the Hamiltonian Seminar Series, University of Toronto.
Mathematician at Chalmers University of Technology and the University of Gothenburg