Klas Modin PRO
Mathematician at Chalmers University of Technology and the University of Gothenburg
Boris Khesin
University of Toronto
Gerard Misiolek
University of Notre Dame
Euler's equations for inviscid incompressible fluid on \(M\)
Arnold (1966): diffeomorphism \(\varphi(t)\) generated by \(u(t)\) is geodesic curve on \(\mathrm{Diff}_\mu(M)\) w.r.t. \[ G_\varphi(\dot\varphi,\dot\varphi) = \int_M |\dot\varphi|^2 \mu \]
Led to geometric and topological hydrodynamics
\(\Rightarrow\) stability results (Arnold and Khesin)
\(\Rightarrow\) well-posedness results (Ebin and Marsden)
Aim: extend Arnold's framework
Ingredients:
\(\mathrm{Diff}_\mu(M)\) symmetry:
Moser 1965:
Principal bundle
\(L^2\) metric on \(\mathrm{Diff}(M)\)
Induces Otto metric
Smooth probability densities
Induced potential function
Poisson reduction
Symplectic reduction
Gives compressible (barotropic) Euler equations
\(\displaystyle P(\rho) = e'(\rho)\rho^2\) is the pressure function
"Potential solutions" \(u = \nabla\theta\) \(\Rightarrow\) horizontal solutions
Consider horizontal solutions \(\Rightarrow\) system on \(T^*\mathrm{Dens}(M)\)
Fisher functional
From \((\varrho,\theta)\in T^*\mathrm{Dens}(M)\) construct wave function
Theorem (Madelung 1927, von Renesse 2011):
Wave function fulfills (nonlinear) Schrödinger equation \[ i\dot\psi + \Delta\psi - f(|\psi|^2)\psi=0\]
Madelung transform
Theorem: Madelung transform induces symplectomorphism \[ \Phi\colon T^*\mathrm{Dens}(M)\to PC^\infty(M,\mathbb{C}\backslash\{0\})\] (Fréchet topology of smooth functions)
Geometric quantum mechanics (Kibble 1979):
wave function \(\Rightarrow\) element of complex projective space
Kähler manifold
Theorem: Madelung transform induces Kähler morphism \[ \Phi\colon T^*\mathrm{Dens}(M)\to PC^\infty(M,\mathbb{C}\backslash\{0\})\] (Fréchet topology of smooth functions)
Is Madelung transform isometry?
Canonical metric on \(PC^\infty(M,\mathbb{C})\): Fubini-Study metric
Fisher-Rao metric on \(\mathrm{Dens}(M)\):
Sasaki-Fisher-Rao metric
on \(T^*\mathrm{Dens}(M)\):
Geometric hydrodynamics via Madelung transform,
PNAS, 2018
Geometry of the Madelung transform,
arXiv preprint, 2018
Slides available at: slides.com/kmodin
By Klas Modin
Presentation given 2017-11-08 at the GSI'17 conference in Paris.
Mathematician at Chalmers University of Technology and the University of Gothenburg