Klas Modin PRO
Mathematician at Chalmers University of Technology and the University of Gothenburg
azimuth
elevation
Idea by Onsager (1949):
Hamiltonian function:
Onsager's observation:
Pos. and neg. strengths ⇒ energy takes values −∞ to ∞
⇒ phase volume function V(E) has inflection point
Idea by Onsager (1949):
Hamiltonian function:
Zeitlin (1991)
Classical
Quantized
vorticity matrix
stream matrix
Hoppe-Yau Laplacian
Classical | Quantum | |
---|---|---|
Lie group | ||
Lie algebra | ||
Phase space | ||
"Strong" norm | ||
Enstrophy norm | ||
Energy norm | ||
Measurables | ||
Singular sol. | vortex sheets | rank-1 matrices |
Axi-symmetry |
SDiff(S2)
SU(N)
Xμ(S2)
C0∞(S2)
su(N)
su(N)∗≃su(N)
∥⋅∥L∞
spectral norm
∥⋅∥L2
Frobenius norm
∥⋅∥H−1
tr(PW)1/2
values of ω
eigenvalues of W
ω zonal
W diagonal
azimuth
elevation
positive blobs
negative blobs
Shnirelman (2005)
Euler's equations (2D):
Zeitlin's equations:
Shnirelman (1993)
Bordemann, Meinrenken, Schlichenmaier (1994)
W→ω in weak* sense as N→∞
Dirac δx
axisymmetric blob bx centered at x
Same SO(3) symmetry!
Point vortex dynamics on S2
Symplectic reduction theory:
only SO(3) symmetry needed in proof
Blob vortex dynamics on S2
Non-zero angular momentum
?
small w.r.t.
H−1 or L2
or what?
Underlying notion: quantization yields canonical vorticity splitting
Enstrophies:
E=⟨W,W⟩F Es=⟨Ws,Ws⟩F Er=⟨Wr,Wr⟩F
Energies:
H=⟨W,ΔN−1W⟩F Hs=⟨Ws,ΔN−1Ws⟩F Hr=⟨Wr,ΔN−1Wr⟩F
Wr⊥Ws in enstrophy norm
Wr⊥W in energy norm
enstrophy levelset of W
energy levelset of W
Equivalence of norms:
References:
Slides available at: slides.com/kmodin
By Klas Modin
Online-presentation given 2021-10 in the Hamiltonian Seminar Series, University of Toronto and University of Arizona.
Mathematician at Chalmers University of Technology and the University of Gothenburg