Mitä on logiikka?

Logiikka tutkii ajattelun ja päättelyn sääntöjä ja muodollisten päättelyiden oikeellisuutta, ja pyrkii erottamaan oikeat päättelyt vääristä.

Erityisesti logiikka tutkii deduktiivista päättelyä (yleisestä -> erityiseen)

(1) Ihmiset ovat kuolevaisia

(2) Sokrates on ihminen

(3) Sokrates on kuolevainen

Deduktiivinen päättely

Rivit (1) ja (2) ovat oletuksia.

Rivi (3) on johtopäätös.

Deduktiivinen päättely on loogisesti pätevää. Tosista oletuksista tehdyt johtopäätökset ovat tosia.

Päättely etenee yleisestä erityistapaukseen.

Induktiivinen päättely

Päättely etenee erityistapauksesta yleistykseen.

(1) Kaikki tunnetut joutsenet ovat valkoisia

(2) Kaikki joutsenet ovat valkoisia

Johtopäätös ei ole tosi. Induktiivinen päättely ei ole loogisesti pätevä.

Esim.

(1) Kuusi on puu

(2) Mänty on puu

(3) Kuusi on mänty

(1) Kaikki Espoolaiset ovat Uusimaalaisia

(2) Kukaan Savolainen ei ole Uusimaalainen

(3) Kukaan Espoolainen ei ole Savolainen

Konnektiivit

Logiikassa luonnollinen kieli käännetään  formaalille  kielelle merkitsemällä lauseita kirjaimilla ja lauseiden suhteita ilmaisevia sanoja konnektiiveilla.

Merkintä Nimitys Lukutapa
A:n negaatio ei A
A:n ja B:n konjugaatio A ja B
A:n ja B:n disjunktio A tai B
A:n ja B:n implikaatio Jos A, niin B
A:n ja B:n ekvivalenssi A, jos ja vain jos B
\neg A
A \lor B
A \land B
A \Rightarrow B
A \Leftrightarrow B

"Jälkiruokaan kuuluu jäätelö tai kahvi"

Olkoon \( A\)=Syö jäätelön ja \(B\)=Juo kahvin.

A

B

Mitä tarkoittaa

a) \( \neg A \)

b) \( A \land B\)

c) \( A \lor B \)

d) \( B \Rightarrow A \) ?

HUOM! Logiikassa aina \( \lor \) tarkoittaa toinen tai toinen tai molemmat (inklusiivinen disjuktio)

MAA11/1

By Opetus.tv

MAA11/1

  • 517
Loading comments...

More from Opetus.tv