Santiago Casas
Cosmologist, Physicist, Data Scientist.
En búsqueda de la Energía Oscura con Euclid y experimentos cosmológicos de cuarta generación
Santiago Casas
Postdoctoral Researcher
TTK, RWTH Aachen University
http://www.esa.int/Science_Exploration/Space_Science
Laniakea: https://projets.ip2i.in2p3.fr//cosmicflows/
Millenium Simulation: https://wwwmpa.mpa-garching.mpg.de/
Illustris Simulation: www.nature.com/articles/nature13316
Planck 2018 CMB Temperature map (Commander) . wiki.cosmos.esa.int/planck-legacy-archive/index.php/CMB_maps
Planck 2018 CMB Dust polarization map . wiki.cosmos.esa.int/planck-legacy-archive/index.php/CMB_maps
Ecuación de campo de Einstein
Supernovas 1998, Premio Nobel 2011
Relatividad General y
condiciones iniciales cuánticas
Concordancia de observaciones, CMB (Premio Nobel 2006, COBE)
Concordance Cosmology:
Quantum Gravity?
O(100) orders of magnitude wrong
(Zeldovich 1967, Weinberg 1989, Martin 2012).
Composed of naturalness and coincidence
sub-problems, among others.
String Theory Landscape?
1. Lentes Gravitacionales
2. Radiación Cósmica de Fondo
Satélite Planck de la ESA
Datos y teoría calzan
3. Galaxy Clustering
Efectos de la gravedad sobre el espacio tiempo
Funciones de correlación
H0 tension at 5σ
Clustering amplitude σ8
Froustey et al, arXiv:2008.01074, arXiv: 2110.11296
The power spectrum is calculated from the linear density perturbations solving the Vlasov-Poisson system
Vlasov-Poisson system is a set of diff.eqn. in which all matter-radiation species are coupled
Slides by: Dennis Linde
Suppression of the power spectrum, at first order depends on energy density ratios
CMB angular spectrum and matter power spectrum are both dependent on neutrino mass, N_eff and ordering
Credits: Rodlophe Cledassou, CNES
Localizado en el punto de Lagrange L2
Credits: Rodlophe Cledassou, CNES
Instrumento VIS:
Credits: Rodlophe Cledassou, CNES
Instrumento NISP:
Credits: Rodolphe Cledassou, CNES
15,000 square degrees
Credits: Tobias Liaudat, CosmoStat
Credits: Rodlophe Cledassou, CNES
https://www.esa.int/ESA/Our_Missions
BAO
Clustering
RSD
Spec-z
Euclid Collaboration, IST:Forecasts, arXiv: 1910.09273
Slides by: Dennis Linde
Angulo et al, 1406.4143
Current data:
Image: https://www.cosmos.esa.int/web/planck/picture-gallery
Euclid:
Scales from: ~ 10−3 to 10 hMpc−1
Awardees of the Euclid STAR Prize Team 2019
Euclid preparation: VII. Forecast validation for Euclid cosmological probes. arXiv:1910.09273
Euclid preparation: VII. Forecast validation for Euclid cosmological probes. arXiv:1910.09273
Euclid preparation: VII. Forecast validation for Euclid cosmological probes. arXiv:1910.09273
Bayes Theorem:
Probability of the model parameters given the data
Fisher Information Matrix:
Curvature (Hessian) of the Likelihood
Gaussian Likelihood in data space:
Euclid preparation: VII. Forecast validation for Euclid cosmological probes. arXiv:1910.09273
Fisher Matrix for a Gaussian likelihood:
Parameter covariance:
Defines an ellipse:
Euclid IST:L and IST:NL in preparation
Plots by: Sabarish Sabarish Venkataramani
Euclid Full:
GC spectro + 3x2pt photo
Code: CosmicFish
S.Casas and M.Martinelli
Code: CosmicFish
S.Casas, M.Martinelli and M.Raveri
Soon to be released: New full pythonic version
Ezquiaga, Zumalacárregui, Front. Astron. Space Sci., 2018
In ΛCDM the two linear gravitational potentials Ψ and Φ are equal to each other
We can describe general modifications of gravity (of the metric) at the linear level with 2 functions of scale (k) and time (a)
Only two independent functions!
Text
Text
Text
Text
Image credit: Isabella Carucci
Continuum emission: Allows detection of position and shapes of galaxies.
Line emission of neutral Hydrogen (HI, 21cm):
Using redshifted HI line -> spectroscopic galaxy survey
2. Intensity Mapping: Large scale correlations in HI brightness temperature -> very good redshift resolution,
good probe of structres
Text
SKA1 Medium Deep Band 1: 20000deg2
Text
Text
Casas, Martinelli, Pettorino, Carucci, Camera (in preparation)
Text
Modification of the Einstein-Hilbert action
Induces changes in the gravitational potentials *
*for negligible matter anisotropic stress
Scale-dependent growth of matter perturbations
Small changes in lensing potential
Free parameter: fR0
Hu, Sawicki (2007)
"Fifth-force" scale for cosmological densities
λC=32Mpc∣fR0∣/10−4
Euclid: Casas et al (2022) in preparation
Text
Euclid: Casas et al (2022) in preparation
Codes used: for background and scale-dependent linear perturbations: MGCAMB and EFTCAMB
For non-linear power spectrum:
Winther et al (2019) fitting formula
Text
Euclid: Casas et al (2022) in preparation
σlogfR0=0.05 (0.9%)
Full probe combination, optimistic Euclid constraints:
fR0=(5.0−0.52+0.58×10−6)
Paper also contains impact of:
Text
Euclid: Casas et al (2022) in preparation
Text
Text
Muchas Gracias!!
By Santiago Casas
La misión espacial Euclid: En búsqueda de la energía oscura.