Lecture 10: Clustering 

 

Shen Shen

November 8, 2024

Intro to Machine Learning

Outline

  • Recap: Supervised learning and unsupervised learning
  • \(k\)-means clustering:
    • \(k\)-means objective
    • \(k\)-means algorithm
      • Initialization matters
      • \(k\) matters
    • Clustering vs. classification
  • Clustering and related
f: x \rightarrow y
Recap: Supervised learning
  • explicit supervision via labels \(y\).
  • labels can be quite expensive to create.

"To date, the cleverest thinker of all time was Issac. "

feature

label

To date, the

cleverest

\dots

To date, the cleverest 

thinker

To date, the cleverest thinker

was

\dots
\dots
\dots

To date, the cleverest thinker of all time was 

Issac

Recap: Unsupervised/Self-supervised learning

Auto-encoder

Training Data

\left\{{x}^{(i)}\right\}_{i=1}^n

loss/objective

\mathcal{L}(F(\mathbf{x}), \mathbf{x})=\|F(\mathbf{x})-\mathbf{x}\|^2

hypothesis class

A model

\(f\)

F=g \circ h: \mathbb{R}^d \rightarrow \mathbb{R}^m \rightarrow \mathbb{R}^d
h
g

\(m<d\)

Recap: Unsupervised/Self-supervised learning
  • \(x_1\): longitude, \(x_2\): latitude
  • Person \(i\) location \(x^{(i)}\)
x_1
x_2

Food-truck placement

  • \(x_1\): longitude, \(x_2\): latitude
  • Person \(i\) location \(x^{(i)}\)
  • Q: where should I have \(k\) food trucks park?

Food-truck placement

x_1
x_2
  • \(x_1\): longitude, \(x_2\): latitude
  • Person \(i\) location \(x^{(i)}\)
  • Q: where should I have \(k\) food trucks park?
  • Food truck \(j\) location \(\mu^{(j)}\)

Food-truck placement

x_1
x_2
  • \(x_1\): longitude, \(x_2\): latitude
  • Person \(i\) location \(x^{(i)}\)
  • Q: where should I have \(k\) food trucks park?
  • Food truck \(j\) location \(\mu^{(j)}\)
  • Loss if \(i\) walks to truck \(j\) : \(\left\|x^{(i)}-\mu^{(j)}\right\|_2^2\)

Food-truck placement

x_1
x_2
  • \(x_1\): longitude, \(x_2\): latitude
  • Person \(i\) location \(x^{(i)}\)
  • Q: where should I have \(k\) food trucks park?
  • Food truck \(j\) location \(\mu^{(j)}\)
  • Loss if \(i\) walks to truck \(j\) : \(\left\|x^{(i)}-\mu^{(j)}\right\|_2^2\)
  • Index of the truck where person \(i\) walks: \(y^{(i)}\)
  • Person \(i\) overall loss:

\(\sum_{j=1}^k \mathbf{1}\left\{y^{(i)}=j\right\}\left\|x^{(i)}-\mu^{(j)}\right\|_2^2\)

Food-truck placement

indicator function, 1 if person \(i\) is assigned to truck \(j,\) otherwise 0.

x_1
x_2

\( \sum_{j=1}^k \mathbf{1}\left\{y^{(i)}=j\right\}\left\|x^{(i)}-\mu^{(j)}\right\|_2^2\)

\(k\)-means objective

clustering membership

clustering centroid location

enumerates over cluster

enumerates over data

can switch the order  = \(\sum_{j=1}^k \sum_{i=1}^n \mathbf{1}\left\{y^{(i)}=j\right\}\left\|x^{(i)}-\mu^{(j)}\right\|_2^2\)

what we learn

\(\sum_{i=1}^n\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

10    return \(\mu, y\)

3            \(y_{\text {old }} = y\)

x_1
x_2

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

10    return \(\mu, y\)

3            \(y_{\text {old }} = y\)

x_1
x_2

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

10    return \(\mu, y\)

3            \(y_{\text {old }} = y\)

x_1
x_2

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

x_1
x_2

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

10    return \(\mu, y\)

3            \(y_{\text {old }} = y\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

x_1
x_2

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

10    return \(\mu, y\)

3            \(y_{\text {old }} = y\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

x_1
x_2

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

10    return \(\mu, y\)

3            \(y_{\text {old }} = y\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

each person \(i\) gets assigned to food truck \(j\), color-coded.

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

\(\dots\)

3            \(y_{\text {old }} = y\)

x_1
x_2

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

3            \(y_{\text {old }} = y\)

x_1
x_2

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

10    return \(\mu, y\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

\(N_j = \sum_{i=1}^n \mathbf{1}\left\{y^{(i)}=j\right\}\)

food truck \(j\) gets moved to the "central" location of all ppl assigned to it

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

\(\dots\)

3            \(y_{\text {old }} = y\)

x_1
x_2

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

2   for \(t=1\) to \(\tau\)

3            \(y_{\text {old }} = y\)

x_1
x_2

10    return \(\mu, y\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

2   for \(t=1\) to \(\tau\)

3            \(y_{\text {old }} = y\)

x_1
x_2

10    return \(\mu, y\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

2   for \(t=1\) to \(\tau\)

3            \(y_{\text {old }} = y\)

x_1
x_2

10    return \(\mu, y\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

3            \(y_{\text {old }} = y\)

x_1
x_2

10    return \(\mu, y\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

3            \(y_{\text {old }} = y\)

x_1
x_2

10    return \(\mu, y\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

3            \(y_{\text {old }} = y\)

x_1
x_2

10    return \(\mu, y\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

3            \(y_{\text {old }} = y\)

x_1
x_2

10    return \(\mu, y\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

2   for \(t=1\) to \(\tau\)

3            \(y_{\text {old }} = y\)

x_1
x_2

10    return \(\mu, y\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

3            \(y_{\text {old }} = y\)

x_1
x_2

10    return \(\mu, y\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

3            \(y_{\text {old }} = y\)

x_1
x_2

10    return \(\mu, y\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

3            \(y_{\text {old }} = y\)

x_1
x_2

10    return \(\mu, y\)

x_1
x_2

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

3            \(y_{\text {old }} = y\)

10    return \(\mu, y\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

3            \(y_{\text {old }} = y\)

x_1
x_2

10    return \(\mu, y\)

x_1
x_2

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

3            \(y_{\text {old }} = y\)

10    return \(\mu, y\)

x_1
x_2

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

3            \(y_{\text {old }} = y\)

10    return \(\mu, y\)

x_1
x_2

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

3            \(y_{\text {old }} = y\)

10    return \(\mu, y\)

x_1
x_2

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

3            \(y_{\text {old }} = y\)

10    return \(\mu, y\)

x_1
x_2

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

3            \(y_{\text {old }} = y\)

10    return \(\mu, y\)

x_1
x_2

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

3            \(y_{\text {old }} = y\)

10    return \(\mu, y\)

x_1
x_2

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

3            \(y_{\text {old }} = y\)

10    return \(\mu, y\)

x_1
x_2

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

3            \(y_{\text {old }} = y\)

10    return \(\mu, y\)

x_1
x_2

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

3            \(y_{\text {old }} = y\)

10    return \(\mu, y\)

x_1
x_2

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

3            \(y_{\text {old }} = y\)

10    return \(\mu, y\)

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

3            \(y_{\text {old }} = y\)

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbf{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

10    return \(\mu, y\)

\left\{ \begin{array}{l} \\ \\ \\ \\ \\ \\ \\ \end{array} \right.
  • if run for enough outer iterations, the algorithm will converge to a local minimum of the k-means objective.
  • that local minimum could be "bad".

Effect of initialization

Effect of initialization - one remedy:

Run random initializations multiple times,

\dots

Compare their \(k\)-means objective values, choose the lowest one 

Effect of \(k\)

k = 5
k = 4
  • Choosing of \(k\) is a judgment call. Cross-validation.

\(k\)-means

Compare to classification

Compare to classification

  • Did we just do \(k\)-class classification?
  • Looks like we assigned label \(y^{(i)}\), which takes \(k\) different values, to each feature vector \(x^{(i)}\)
  • But we didn't use any labeled data
  • The "labels" here don't have meaning; we could permute them and have the same result.
  • Output is really a partition of the data/features.
  • So what did we do?
  • We clustered the data: we grouped the data by similarity
  • Why not just plot the data? We should -- whenever we can!
  • But also: Precision, big data, high dimensions, high volume.
  • An example of unsupervised learning: no labeled data, and we're finding patterns.

Compare to classification

\left( \begin{array}{l} \\ \\ \\ \\ \\ \\ \end{array} \right.
  • \(k\)-means ++
  • integre programming
  • enumeration
  • ...
  • Hierarchical Clustering
  • Gaussian mixture model (GMMs)
  • DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
  • More broadly, self-supervised learning
  • Auto-encoder
  • Variational auto-encoder
  • Dimensionality reduction (PCA, t-SNE
  • Rich world of generative models

...

[Slide Credit: Yann LeCun]

\left) \begin{array}{l} \\ \\ \\ \\ \\ \\ \end{array} \right.

Summary

  • Clustering is an important kind of unsupervised learning in which we try to divide the x’s into a finite set of groups that are in some sense similar.  
  • A widely used clustering objective is the k-means.  It also requires a distance metric on x’s.
  • There’s a convenient special-purpose method for finding a local optimum: the k-means algorithm.
  • The solution obtained by k-means algorithm is sensitive to initialization.
  • The solution obtained by k-means algorithm is sensitive to the number of clusters chosen.

Thanks!

We'd love to hear your thoughts.

K-MEANS\((k, \tau, \left\{x^{(i)}\right\}_{i=1}^n)\)

1   \(\mu, y=\) random initialization

2   for \(t=1\) to \(\tau\)

3            \(y_{o l d}=y\)

4            for \(i=1\) to \(n\)

\(5 \quad \quad\quad\quad \quad y^{(i)}=\arg \min _j\left\|x^{(i)}-\mu^{(j)}\right\|^2\)

6            for \(j=1\) to \(k\)

\(7 \quad \quad\quad\quad \quad \mu^{(j)}=\frac{1}{N_j} \sum_{i=1}^n \mathbb{1}\left(y^{(i)}=\mathfrak{j}\right) x^{(i)}\)

8            if \(y==y_{\text {old }}\)

9\(\quad \quad \quad\quad \quad\)break

10    return \(\mu, y\)

Food distribution placement

  • \(x_1\): longitude, \(x_2\): latitude
  • Person \(i\) location \(x^{(i)}\)
  • Food truck \(j\) location \(\mu^{(j)}\)
  • Q: where should I have my \(k\) food trucks park?
  • want to minimize the "loss" of people we serve
  • Loss if \(i\) walks to truck \(j\) : \(\left\|x^{(i)}-\mu^{(j)}\right\|_2^2\)
  • Index of the truck where person \(i\) is chosen to walk to: \(y^{(i)}\)

(image credit: Tamara Broderick)

x_1
x_2

6.390 IntroML (Fall24) - Lecture 10 Clustering

By Shen Shen

6.390 IntroML (Fall24) - Lecture 10 Clustering

  • 25