• introml-fa24-final-review

  • 6.390 IntroML (Fall24) - Lecture 13 Non-parametric Models

  • 6.390 IntroML (Fall24) - Lecture 12 Reinforcement Learning

  • 6.390 IntroML (Fall24) - Lecture 11 Markov Decision Processes

  • 6.390 IntroML (Fall24) - Lecture 10 Clustering

  • 6.390 IntroML (Fall24) - Lecture 9 Transformers

  • 6.390 IntroML (Fall24) - Lecture 8 Convolutional Neural Networks

  • introml-fa24-midterm-review

  • 6.390 IntroML (Fall24) - Lecture 7 Auto-encoders (Representation Learning)

  • 6.390 IntroML (Fall24) - Lecture 6 Neural Networks

  • 6.390 IntroML (Fall24) - Lecture 5 Features

  • 6.390 IntroML (Fall24) - Lecture 4 Linear Classification

  • 6.390 IntroML (Fall24) - Lecture 3 Gradient Descent Methods

  • 6.390 IntroML (Fall24) - Lecture 2 Linear Regression and Regularization

  • introml-sp24-final-review

  • Guest Lecture - Some recent ML trends/applications

  • 6.036-to-6.390

  • introml-sp24-midterm-review

  • introml-sp24-lec12

  • introml-sp24-lec11

  • introml-sp24-lec10

  • introml-sp24-lec9

  • introml-sp24-lec8

  • introml-sp24-lec7

  • introml-sp24-lec6

  • introml-sp24-lec5

  • introml-sp24-lec4

  • introml-sp24-lec3

  • introml-sp24-lec2

  • Lecture 18 - Deep Reinforcement Learning

  • Lecture 24 - Some recent ML trends/applications - 6.7900 Machine Learning (Fall 2023)

  • Lecture 17 - Reinforcement Learning - 6.7900 Machine Learning (Fall23)

  • Lecture 16 - Markov Decision Processes

  • 6.390 overview

  • CNN

  • Convex sets and convex functions