All decks
Close
-
6.390 IntroML Spring25 Final Review
-
Robotics and Generative AI
MIT Math Undergraduate Association Talk Series
-
6.C011/C511 - ML for CS (Spring25) - Lecture 9 EECS Case Studies & Integration
-
6.C011/C511 - ML for CS (Spring25) - Lecture 8 Domain Shift, Adaptation, and Robustness
-
6.C011/C511 - ML for CS (Spring25) - Lecture 7 - Reinforcement Learning III (Actor-critic; variance reduction)
-
6.C011/C511 - ML for CS (Spring25) - Lecture 6 Reinforcement Learning II (Value, Policy Gradient)
-
6.C011/C511 - ML for CS (Spring25) - Lecture 5 Reinforcement Learning I (Value-based methods)
-
6.C011/C511 - ML for CS (Spring25) - Lecture 4 Generative Models - Scaling Up
-
6.C011/C511 - ML for CS (Spring25) - Lecture 3 Generative Models - Diffusion
-
6.C011/C511 - ML for CS (Spring25) - Lecture 2 Generative Models - Autoregressive
-
6.C011/C511 - ML for CS (Spring25) - Lecture 1 Representation Learning
-
6.390 IntroML (Spring25) - Lecture 12 Non-parametric Models
-
Robotics and Generative AI
HackMIT Blueprint
-
Robotics and Generative AI
talk at Harvard-MIT Mathematics Tournament (HMMT)
-
6.390 IntroML (Spring25) - Lecture 11 Reinforcement Learning
-
6.390 IntroML (Spring25) - Lecture 10 Markov Decision Processes
-
6.390 IntroML (Spring25) - Lecture 9 Transformers
-
6.390 IntroML (Spring25) - Lecture 8 Representation Learning
-
IntroML (Spring25) - Lecture 7 Convolutional Neural Networks
-
6.390 IntroML (Spring25) - Lecture 6 Neural Networks II
-
6.390 IntroML (Spring25) - Lecture 5 Features, Neural Networks I
-
6.390 IntroML (Spring25) - Lecture 4 Linear Classification
-
6.390 IntroML (Spring25) - Lecture 3 Gradient Descent Methods
-
6.390 IntroML (Spring25) - Lecture 2 Linear Regression and Regularization
-
6.390 IntroML (Fall24) - Lecture 13 Non-parametric Models
-
6.390 IntroML (Fall24) - Lecture 12 Reinforcement Learning
-
6.390 IntroML (Fall24) - Lecture 11 Markov Decision Processes
-
6.390 IntroML (Fall24) - Lecture 10 Clustering
-
6.390 IntroML (Fall24) - Lecture 9 Transformers
-
6.390 IntroML (Fall24) - Lecture 8 Convolutional Neural Networks
-
template
-
6.390 IntroML (Fall24) - Lecture 7 Auto-encoders (Representation Learning)
-
6.390 IntroML (Fall24) - Lecture 6 Neural Networks
-
6.390 IntroML (Fall24) - Lecture 5 Features
-
6.390 IntroML (Fall24) - Lecture 4 Linear Classification
-
6.390 IntroML (Fall24) - Lecture 3 Gradient Descent Methods
-
6.390 IntroML (Fall24) - Lecture 2 Linear Regression and Regularization
-
Guest Lecture - Some recent ML trends/applications
-
6.036-to-6.390
-
introml-sp24-lec12
-
introml-sp24-lec11
-
introml-sp24-lec10
-
introml-sp24-lec9
-
introml-sp24-lec8
-
introml-sp24-lec7
-
introml-sp24-lec6
-
introml-sp24-lec5
-
introml-sp24-lec4
-
introml-sp24-lec3
-
introml-sp24-lec2