All decks Close
All decks 56
  • 6.390 IntroML Spring25 Final Review

  • Robotics and Generative AI

    MIT Math Undergraduate Association Talk Series

  • 6.C011/C511 - ML for CS (Spring25) - Lecture 9 EECS Case Studies & Integration

  • 6.C011/C511 - ML for CS (Spring25) - Lecture 8 Domain Shift, Adaptation, and Robustness

  • 6.C011/C511 - ML for CS (Spring25) - Lecture 7 - Reinforcement Learning III (Actor-critic; variance reduction)

  • 6.C011/C511 - ML for CS (Spring25) - Lecture 6 Reinforcement Learning II (Value, Policy Gradient)

  • 6.C011/C511 - ML for CS (Spring25) - Lecture 5 Reinforcement Learning I (Value-based methods)

  • 6.C011/C511 - ML for CS (Spring25) - Lecture 4 Generative Models - Scaling Up

  • 6.C011/C511 - ML for CS (Spring25) - Lecture 3 Generative Models - Diffusion

  • 6.C011/C511 - ML for CS (Spring25) - Lecture 2 Generative Models - Autoregressive

  • 6.C011/C511 - ML for CS (Spring25) - Lecture 1 Representation Learning

  • 6.390 IntroML (Spring25) - Lecture 12 Non-parametric Models

  • Robotics and Generative AI

    HackMIT Blueprint

  • Robotics and Generative AI

    talk at Harvard-MIT Mathematics Tournament (HMMT)

  • 6.390 IntroML (Spring25) - Lecture 11 Reinforcement Learning

  • 6.390 IntroML (Spring25) - Lecture 10 Markov Decision Processes

  • 6.390 IntroML (Spring25) - Lecture 9 Transformers

  • 6.390 IntroML (Spring25) - Lecture 8 Representation Learning

  • IntroML (Spring25) - Lecture 7 Convolutional Neural Networks

  • 6.390 IntroML (Spring25) - Lecture 6 Neural Networks II

  • 6.390 IntroML (Spring25) - Lecture 5 Features, Neural Networks I

  • 6.390 IntroML (Spring25) - Lecture 4 Linear Classification

  • 6.390 IntroML (Spring25) - Lecture 3 Gradient Descent Methods

  • 6.390 IntroML (Spring25) - Lecture 2 Linear Regression and Regularization

  • 6.390 IntroML (Fall24) - Lecture 13 Non-parametric Models

  • 6.390 IntroML (Fall24) - Lecture 12 Reinforcement Learning

  • 6.390 IntroML (Fall24) - Lecture 11 Markov Decision Processes

  • 6.390 IntroML (Fall24) - Lecture 10 Clustering

  • 6.390 IntroML (Fall24) - Lecture 9 Transformers

  • 6.390 IntroML (Fall24) - Lecture 8 Convolutional Neural Networks

  • template

  • 6.390 IntroML (Fall24) - Lecture 7 Auto-encoders (Representation Learning)

  • 6.390 IntroML (Fall24) - Lecture 6 Neural Networks

  • 6.390 IntroML (Fall24) - Lecture 5 Features

  • 6.390 IntroML (Fall24) - Lecture 4 Linear Classification

  • 6.390 IntroML (Fall24) - Lecture 3 Gradient Descent Methods

  • 6.390 IntroML (Fall24) - Lecture 2 Linear Regression and Regularization

  • Guest Lecture - Some recent ML trends/applications

  • 6.036-to-6.390

  • introml-sp24-lec12

  • introml-sp24-lec11

  • introml-sp24-lec10

  • introml-sp24-lec9

  • introml-sp24-lec8

  • introml-sp24-lec7

  • introml-sp24-lec6

  • introml-sp24-lec5

  • introml-sp24-lec4

  • introml-sp24-lec3

  • introml-sp24-lec2