Intro to Machine Learning

Lecture 9: Non-parametric Models

Shen Shen

April 12, 2024

(many slides adapted from Tamara Broderick)

Outline

  • Recap (transforermers)
  • Non-parametric models
    • interpretability
    • ease of use/simplicity
  • Decision tree
    • Terminologies
    • Learn via the BuildTree algorithm
      • Regression
      • Classification 
  • ​Nearest neighbor

Outline

  • Recap (transforermers)
  • Non-parametric models
    • interpretability
    • ease of use/simplicity
  • Decision tree
    • Terminologies
    • Learn via the BuildTree algorithm
      • Regression
      • Classification 
  • ​Nearest neighbor

Enduring principles:

  1. Chop up signal into patches (divide and conquer)
  2. Process each patch identically (and in parallel)

Lessons from CNNs

CNN

  • Importantly, all these learned projection weights \(W\) are shared along the token sequence.
  • Same "operation" repeated.
x^{(1)}

W_k
W_v
W_q
W_k
W_v
W_q
x^{(2)}

x^{(3)}

W_k
W_v
W_q
x^{(4)}

W_k
W_v
W_q
x^{(5)}

W_k
W_v
W_q

Transformers

Interpretability

Outline

  • Recap (transforermers)
  • Non-parametric models
    • interpretability
    • ease of use/simplicity
  • Decision tree
    • Terminologies
    • Learn via the BuildTree algorithm
      • Regression
      • Classification 
  • ​Nearest neighbor
  • does not mean "no parameters"
  • there are still parameters to be learned to build a hypothesis/model.
  • just that, the model/hypothesis does not have a fixed parameterization. 
  • (e.g. even the number of parameters can change.)

Non-parametric models 

  • Decision trees and 
  • Nearest neighbor

are the classical examples of non-parametric models

Outline

  • Recap (transforermers)
  • Non-parametric models
    • interpretability
    • ease of use/simplicity
  • Decision tree
    • Terminologies
    • Learn via the BuildTree algorithm
      • Regression
      • Classification 
  • ​Nearest neighbor

features:

\(x_1\): date
\(x_2\): age
\(x_3\): height
\(x_4\): weight
\(x_5\): sinus tachycardia?
\(x_6\): min systolic bp, 24h
\(x_7\): latest diastolic bp

 

 

labels:
1: high risk
-1: low risk

Root node

Internal (decision) node

Leaf (terminal) node

Split dimension

Split value

A node can be specified by

Node(split dim, split value, left child, right child)

A leaf can be specified by

Leaf(leaf value)

features:

  • \(x_1\): temperature (deg C)
  • \(x_2\): precipitation (cm/hr)

labels:
\(y\): km run

Tree defines an axis-aligned “partition” of the feature space:

How to learn a tree?

Recall: familiar "recipe"

  1. Choose how to predict label (given features & parameters)
  2. Choose a loss (between guess & actual label)
  3. Choose parameters by trying to minimize the training loss

Here, we need:

  • For each internal node:
    • split dimension
    • split value
    • child nodes
  • For each leaf node:
    • label

 

  • input \(I\): set of indices
  • \(k\): hyper-parameter, maximum leaf "size", i.e. how many training data ended in that leaf node.
  • \(\hat y\): (intermediate) prediction

\(\operatorname{BuildTree}(I;k)\)

  1. if \(|I| > k\)
  2.       for each split dim \(j\) and split value \(s\)
  3.             Set   \(I_{j, s}^{+}=\left\{i \in I \mid x_j^{(i)} \geq s\right\}\)
  4.             Set   \(I_{j, s}^{-}=\left\{i \in I \mid x_j^{(i)}<s\right\}\)
  5.             Set   \(\hat{y}_{j, s}^{+}=\)average \(_{i \in I_{j, s}^{+}}  y^{(i)}\)
  6.             Set   \(\hat{y}_{j, s}^{-}=\)average \(_{i \in I_{j, s}^{-}}  y^{(i)}\)
  7.             Set   \(E_{j, s}=\sum_{i \in I_{j, s}^{+}}\left(y^{(i)}-\hat{y}_{j, s}^{+}\right)^2+\sum_{i \in I_{j, s}^{-}}\left(y^{(i)}-\hat{y}_{j, s}^{-}\right)^2\)
  8.       Set   \(\left(j^*, s^*\right)=\arg \min _{j, s} E_{j, s}\)
  9. else
  10.       Set   \(\hat{y}=\) average \(_{i \in I}  y^{(i)}\)
  11.       return \(\operatorname{LEAF}\)(leave_value=\(\hat{y})\)
  12. return \(\operatorname{Node}\left(j^*, s^*, \operatorname{BuildTree}\left(I_{j^*, s^*}^{-}, k\right), \operatorname{BuildTree}\left(I_{j^*, s^*}^{+}, k\right)\right)\)
  • \(j\): split dimension
  • \(s\): split value

\(\operatorname{BuildTree}(I;k)\)

  1. if \(|I| > k\)
  2.       for each split dim \(j\) and split value \(s\)
  3.             Set   \(I_{j, s}^{+}=\left\{i \in I \mid x_j^{(i)} \geq s\right\}\)
  4.             Set   \(I_{j, s}^{-}=\left\{i \in I \mid x_j^{(i)}<s\right\}\)
  5.             Set   \(\hat{y}_{j, s}^{+}=\)average \(_{i \in I_{j, s}^{+}}  y^{(i)}\)
  6.             Set   \(\hat{y}_{j, s}^{-}=\)average \(_{i \in I_{j, s}^{-}}  y^{(i)}\)
  7.             Set   \(E_{j, s}=\sum_{i \in I_{j, s}^{+}}\left(y^{(i)}-\hat{y}_{j, s}^{+}\right)^2+\sum_{i \in I_{j, s}^{-}}\left(y^{(i)}-\hat{y}_{j, s}^{-}\right)^2\)
  8.       Set   \(\left(j^*, s^*\right)=\arg \min _{j, s} E_{j, s}\)
  9. else
  10.       Set   \(\hat{y}=\) average \(_{i \in I}  y^{(i)}\)
  11.       return \(\operatorname{LEAF}\)(leave_value=\(\hat{y})\)
  12. return \(\operatorname{Node}\left(j^*, s^*, \operatorname{BuildTree}\left(I_{j^*, s^*}^{-}, k\right), \operatorname{BuildTree}\left(I_{j^*, s^*}^{+}, k\right)\right)\)
  • Choose \(k=2\)
  • \(\operatorname{BuildTree}(\{1,2,3\};2)\)
  • Line 1 true
  • Consider a fixed \((j, s)\)
    • \(I_{j, s}^{+} = \{2,3\}\)
    • \(I_{j, s}^{-} = \{1\}\)
    • \(\hat{y}_{j, s}^{+} = 5\)
    • \(\hat{y}_{j, s}^{-} = 0\)
    • \(E_{j, s} =0\)
{x}^{(1)}
{x}^{(3)}
{x}^{(2)}

\(\operatorname{BuildTree}(I;k)\)

  1. if \(|I| > k\)
  2.       for each split dim \(j\) and split value \(s\)
  3.             Set   \(I_{j, s}^{+}=\left\{i \in I \mid x_j^{(i)} \geq s\right\}\)
  4.             Set   \(I_{j, s}^{-}=\left\{i \in I \mid x_j^{(i)}<s\right\}\)
  5.             Set   \(\hat{y}_{j, s}^{+}=\)average \(_{i \in I_{j, s}^{+}}  y^{(i)}\)
  6.             Set   \(\hat{y}_{j, s}^{-}=\)average \(_{i \in I_{j, s}^{-}}  y^{(i)}\)
  7.             Set   \(E_{j, s}=\sum_{i \in I_{j, s}^{+}}\left(y^{(i)}-\hat{y}_{j, s}^{+}\right)^2+\sum_{i \in I_{j, s}^{-}}\left(y^{(i)}-\hat{y}_{j, s}^{-}\right)^2\)
  8.       Set   \(\left(j^*, s^*\right)=\arg \min _{j, s} E_{j, s}\)
  9. else
  10.       Set   \(\hat{y}=\) average \(_{i \in I}  y^{(i)}\)
  11.       return \(\operatorname{LEAF}\)(leave_value=\(\hat{y})\)
  12. return \(\operatorname{Node}\left(j^*, s^*, \operatorname{BuildTree}\left(I_{j^*, s^*}^{-}, k\right), \operatorname{BuildTree}\left(I_{j^*, s^*}^{+}, k\right)\right)\)
  • Choose \(k=2\)
  • \(\operatorname{BuildTree}(\{1,2,3\};2)\)
  • Line 1 true
  • Consider a fixed \((j, s)\)
    • \(I_{j, s}^{+} = \{2,3\}\)
    • \(I_{j, s}^{-} = \{1\}\)
    • \(\hat{y}_{j, s}^{+} = 5\)
    • \(\hat{y}_{j, s}^{-} = 0\)
    • \(E_{j, s} =0\)
{x}^{(1)}
{x}^{(3)}
{x}^{(2)}

\(\operatorname{BuildTree}(I;k)\)

  1. if \(|I| > k\)
  2.       for each split dim \(j\) and split value \(s\)
  3.             Set   \(I_{j, s}^{+}=\left\{i \in I \mid x_j^{(i)} \geq s\right\}\)
  4.             Set   \(I_{j, s}^{-}=\left\{i \in I \mid x_j^{(i)}<s\right\}\)
  5.             Set   \(\hat{y}_{j, s}^{+}=\)average \(_{i \in I_{j, s}^{+}}  y^{(i)}\)
  6.             Set   \(\hat{y}_{j, s}^{-}=\)average \(_{i \in I_{j, s}^{-}}  y^{(i)}\)
  7.             Set   \(E_{j, s}=\sum_{i \in I_{j, s}^{+}}\left(y^{(i)}-\hat{y}_{j, s}^{+}\right)^2+\sum_{i \in I_{j, s}^{-}}\left(y^{(i)}-\hat{y}_{j, s}^{-}\right)^2\)
  8.       Set   \(\left(j^*, s^*\right)=\arg \min _{j, s} E_{j, s}\)
  9. else
  10.       Set   \(\hat{y}=\) average \(_{i \in I}  y^{(i)}\)
  11.       return \(\operatorname{LEAF}\)(leave_value=\(\hat{y})\)
  12. return \(\operatorname{Node}\left(j^*, s^*, \operatorname{BuildTree}\left(I_{j^*, s^*}^{-}, k\right), \operatorname{BuildTree}\left(I_{j^*, s^*}^{+}, k\right)\right)\)
  • So for line 2: a finite number of \((j, s)\) combo suffices (those splits in-between data points)
  • Line 8 picks the "best" among these finite combos. (random tie-breaking)

\(\operatorname{BuildTree}(I;k)\)

  1. if \(|I| > k\)
  2.       for each split dim \(j\) and split value \(s\)
  3.             Set   \(I_{j, s}^{+}=\left\{i \in I \mid x_j^{(i)} \geq s\right\}\)
  4.             Set   \(I_{j, s}^{-}=\left\{i \in I \mid x_j^{(i)}<s\right\}\)
  5.             Set   \(\hat{y}_{j, s}^{+}=\)average \(_{i \in I_{j, s}^{+}}  y^{(i)}\)
  6.             Set   \(\hat{y}_{j, s}^{-}=\)average \(_{i \in I_{j, s}^{-}}  y^{(i)}\)
  7.             Set   \(E_{j, s}=\sum_{i \in I_{j, s}^{+}}\left(y^{(i)}-\hat{y}_{j, s}^{+}\right)^2+\sum_{i \in I_{j, s}^{-}}\left(y^{(i)}-\hat{y}_{j, s}^{-}\right)^2\)
  8.       Set   \(\left(j^*, s^*\right)=\arg \min _{j, s} E_{j, s}\)
  9. else
  10.       Set   \(\hat{y}=\) average \(_{i \in I}  y^{(i)}\)
  11.       return \(\operatorname{LEAF}\)(leave_value=\(\hat{y})\)
  12. return \(\operatorname{Node}\left(j^*, s^*, \operatorname{BuildTree}\left(I_{j^*, s^*}^{-}, k\right), \operatorname{BuildTree}\left(I_{j^*, s^*}^{+}, k\right)\right)\)

Suppose line 8 sets this \((j^*,s^*) = (1, 1.7)\)

 

{x}^{(1)}
{x}^{(3)}
{x}^{(2)}
\operatorname{BuildTree}\left(\{1\}; 2\right)
\operatorname{BuildTree}\left(\{2,3\}; 2\right)

then 12 recursion

\(\operatorname{BuildTree}(I;k)\)

  1. if \(|I| > k\)
  2.       for each split dim \(j\) and split value \(s\)
  3.             Set   \(I_{j, s}^{+}=\left\{i \in I \mid x_j^{(i)} \geq s\right\}\)
  4.             Set   \(I_{j, s}^{-}=\left\{i \in I \mid x_j^{(i)}<s\right\}\)
  5.             Set   \(\hat{y}_{j, s}^{+}=\)average \(_{i \in I_{j, s}^{+}}  y^{(i)}\)
  6.             Set   \(\hat{y}_{j, s}^{-}=\)average \(_{i \in I_{j, s}^{-}}  y^{(i)}\)
  7.             Set   \(E_{j, s}=\sum_{i \in I_{j, s}^{+}}\left(y^{(i)}-\hat{y}_{j, s}^{+}\right)^2+\sum_{i \in I_{j, s}^{-}}\left(y^{(i)}-\hat{y}_{j, s}^{-}\right)^2\)
  8.       Set   \(\left(j^*, s^*\right)=\arg \min _{j, s} E_{j, s}\)
  9. else
  10.       Set   \(\hat{y}=\) average \(_{i \in I}  y^{(i)}\)
  11.       return \(\operatorname{LEAF}\)(leave_value=\(\hat{y})\)
  12. return \(\operatorname{Node}\left(j^*, s^*, \operatorname{BuildTree}\left(I_{j^*, s^*}^{-}, k\right), \operatorname{BuildTree}\left(I_{j^*, s^*}^{+}, k\right)\right)\)

Line 8 sets this \((j^*,s^*)\)

 

{x}^{(1)}
{x}^{(3)}
{x}^{(2)}
\operatorname{BuildTree}\left(\{1\}; 2\right)
\operatorname{BuildTree}\left(\{2,3\}; 2\right)

Line 12 recursion

\(\operatorname{BuildTree}(I;k)\)

  1. if \(|I| > k\)
  2.       for each split dim \(j\) and split value \(s\)
  3.             Set   \(I_{j, s}^{+}=\left\{i \in I \mid x_j^{(i)} \geq s\right\}\)
  4.             Set   \(I_{j, s}^{-}=\left\{i \in I \mid x_j^{(i)}<s\right\}\)
  5.             Set   \(\hat{y}_{j, s}^{+}=\)average \(_{i \in I_{j, s}^{+}}  y^{(i)}\)
  6.             Set   \(\hat{y}_{j, s}^{-}=\)average \(_{i \in I_{j, s}^{-}}  y^{(i)}\)
  7.             Set   \(E_{j, s}=\sum_{i \in I_{j, s}^{+}}\left(y^{(i)}-\hat{y}_{j, s}^{+}\right)^2+\sum_{i \in I_{j, s}^{-}}\left(y^{(i)}-\hat{y}_{j, s}^{-}\right)^2\)
  8.       Set   \(\left(j^*, s^*\right)=\arg \min _{j, s} E_{j, s}\)
  9. else
  10.       Set   \(\hat{y}=\) average \(_{i \in I}  y^{(i)}\)
  11.       return \(\operatorname{LEAF}\)(leave_value=\(\hat{y})\)
  12. return \(\operatorname{Node}\left(j^*, s^*, \operatorname{BuildTree}\left(I_{j^*, s^*}^{-}, k\right), \operatorname{BuildTree}\left(I_{j^*, s^*}^{+}, k\right)\right)\)

Line 8 sets this \((j^*,s^*)\)

 

{x}^{(1)}
{x}^{(3)}
{x}^{(2)}
\operatorname{BuildTree}\left(\{2,3\}; 2\right)

Line 12 recursion

\(\operatorname{BuildTree}(I;k)\)

  1. if \(|I| > k\)
  2.       for each split dim \(j\) and split value \(s\)
  3.             Set   \(I_{j, s}^{+}=\left\{i \in I \mid x_j^{(i)} \geq s\right\}\)
  4.             Set   \(I_{j, s}^{-}=\left\{i \in I \mid x_j^{(i)}<s\right\}\)
  5.             Set   \(\hat{y}_{j, s}^{+}=\)average \(_{i \in I_{j, s}^{+}}  y^{(i)}\)
  6.             Set   \(\hat{y}_{j, s}^{-}=\)average \(_{i \in I_{j, s}^{-}}  y^{(i)}\)
  7.             Set   \(E_{j, s}=\sum_{i \in I_{j, s}^{+}}\left(y^{(i)}-\hat{y}_{j, s}^{+}\right)^2+\sum_{i \in I_{j, s}^{-}}\left(y^{(i)}-\hat{y}_{j, s}^{-}\right)^2\)
  8.       Set   \(\left(j^*, s^*\right)=\arg \min _{j, s} E_{j, s}\)
  9. else
  10.       Set   \(\hat{y}=\) average \(_{i \in I}  y^{(i)}\)
  11.       return \(\operatorname{LEAF}\)(leave_value=\(\hat{y})\)
  12. return \(\operatorname{Node}\left(j^*, s^*, \operatorname{BuildTree}\left(I_{j^*, s^*}^{-}, k\right), \operatorname{BuildTree}\left(I_{j^*, s^*}^{+}, k\right)\right)\)

Line 8 sets this \((j^*,s^*)\)

 

{x}^{(1)}
{x}^{(3)}
{x}^{(2)}
\operatorname{BuildTree}\left(\{2,3\}; 2\right)

Line 12 recursion

\(\operatorname{BuildTree}(I;k)\)

  1. if \(|I| > k\)
  2.       for each split dim \(j\) and split value \(s\)
  3.             Set   \(I_{j, s}^{+}=\left\{i \in I \mid x_j^{(i)} \geq s\right\}\)
  4.             Set   \(I_{j, s}^{-}=\left\{i \in I \mid x_j^{(i)}<s\right\}\)
  5.             Set   \(\hat{y}_{j, s}^{+}=\)average \(_{i \in I_{j, s}^{+}}  y^{(i)}\)
  6.             Set   \(\hat{y}_{j, s}^{-}=\)average \(_{i \in I_{j, s}^{-}}  y^{(i)}\)
  7.             Set   \(E_{j, s}=\sum_{i \in I_{j, s}^{+}}\left(y^{(i)}-\hat{y}_{j, s}^{+}\right)^2+\sum_{i \in I_{j, s}^{-}}\left(y^{(i)}-\hat{y}_{j, s}^{-}\right)^2\)
  8.       Set   \(\left(j^*, s^*\right)=\arg \min _{j, s} E_{j, s}\)
  9. else
  10.       Set   \(\hat{y}=\) average \(_{i \in I}  y^{(i)}\)
  11.       return \(\operatorname{LEAF}\)(leave_value=\(\hat{y})\)
  12. return \(\operatorname{Node}\left(j^*, s^*, \operatorname{BuildTree}\left(I_{j^*, s^*}^{-}, k\right), \operatorname{BuildTree}\left(I_{j^*, s^*}^{+}, k\right)\right)\)

Line 8 sets this \((j^*,s^*)\)

 

{x}^{(1)}
{x}^{(3)}
{x}^{(2)}

Line 12 recursion

\(\operatorname{BuildTree}(I;k)\)

  1. if \(|I| > k\)
  2.       for each split dim \(j\) and split value \(s\)
  3.             Set   \(I_{j, s}^{+}=\left\{i \in I \mid x_j^{(i)} \geq s\right\}\)
  4.             Set   \(I_{j, s}^{-}=\left\{i \in I \mid x_j^{(i)}<s\right\}\)
  5.             Set   \(\hat{y}_{j, s}^{+}=\)average \(_{i \in I_{j, s}^{+}}  y^{(i)}\)
  6.             Set   \(\hat{y}_{j, s}^{-}=\)average \(_{i \in I_{j, s}^{-}}  y^{(i)}\)
  7.             Set   \(E_{j, s}=\sum_{i \in I_{j, s}^{+}}\left(y^{(i)}-\hat{y}_{j, s}^{+}\right)^2+\sum_{i \in I_{j, s}^{-}}\left(y^{(i)}-\hat{y}_{j, s}^{-}\right)^2\)
  8.       Set   \(\left(j^*, s^*\right)=\arg \min _{j, s} E_{j, s}\)
  9. else
  10.       Set   \(\hat{y}=\) average \(_{i \in I}  y^{(i)}\)
  11.       return \(\operatorname{LEAF}\)(leave_value=\(\hat{y})\)
  12. return \(\operatorname{Node}\left(j^*, s^*, \operatorname{BuildTree}\left(I_{j^*, s^*}^{-}, k\right), \operatorname{BuildTree}\left(I_{j^*, s^*}^{+}, k\right)\right)\)

\(\operatorname{BuildTree}(I;k)\)

  1. if \(|I| > k\)
  2.       for each split dim \(j\) and split value \(s\)
  3.             Set   \(I_{j, s}^{+}=\left\{i \in I \mid x_j^{(i)} \geq s\right\}\)
  4.             Set   \(I_{j, s}^{-}=\left\{i \in I \mid x_j^{(i)}<s\right\}\)
  5.             Set   \(\hat{y}_{j, s}^{+}=\)average \(_{i \in I_{j, s}^{+}}  y^{(i)}\)
  6.             Set   \(\hat{y}_{j, s}^{-}=\)average \(_{i \in I_{j, s}^{-}}  y^{(i)}\)
  7.             Set   \(E_{j, s}=\sum_{i \in I_{j, s}^{+}}\left(y^{(i)}-\hat{y}_{j, s}^{+}\right)^2+\sum_{i \in I_{j, s}^{-}}\left(y^{(i)}-\hat{y}_{j, s}^{-}\right)^2\)
  8.       Set   \(\left(j^*, s^*\right)=\arg \min _{j, s} E_{j, s}\)
  9. else
  10.       Set   \(\hat{y}=\) average \(_{i \in I}  y^{(i)}\)
  11.       return \(\operatorname{LEAF}\)(leave_value=\(\hat{y})\)
  12. return \(\operatorname{Node}\left(j^*, s^*, \operatorname{BuildTree}\left(I_{j^*, s^*}^{-}, k\right), \operatorname{BuildTree}\left(I_{j^*, s^*}^{+}, k\right)\right)\)

\(\operatorname{BuildTree}(I;k)\)

  1. if \(|I| > k\)
  2.       for each split dim \(j\) and split value \(s\)
  3.             Set   \(I_{j, s}^{+}=\left\{i \in I \mid x_j^{(i)} \geq s\right\}\)
  4.             Set   \(I_{j, s}^{-}=\left\{i \in I \mid x_j^{(i)}<s\right\}\)
  5.             Set.  \(\hat{y}_{j, s}^{+}=\)average \(_{i \in I_{j, s}^{+}}  y^{(i)}\)
  6.             Set   \(\hat{y}_{j, s}^{-}=\)average \(_{i \in I_{j, s}^{-}}  y^{(i)}\)
  7.             Set   \(E_{j, s}=\sum_{i \in I_{j, s}^{+}}\left(y^{(i)}-\hat{y}_{j, s}^{+}\right)^2+\sum_{i \in I_{j, s}^{-}}\left(y^{(i)}-\hat{y}_{j, s}^{-}\right)^2\)
  8.       Set   \(\left(j^*, s^*\right)=\arg \min _{j, s} E_{j, s}\)
  9. else
  10.       Set   \(\hat{y}=\) average \(_{i \in I}  y^{(i)}\)
  11.       return \(\operatorname{LEAF}\)(leave_value=\(\hat{y})\)
  12. return \(\operatorname{Node}\left(j^*, s^*, \operatorname{BuildTree}\left(I_{j^*, s^*}^{-}, k\right), \operatorname{BuildTree}\left(I_{j^*, s^*}^{+}, k\right)\right)\)

\(\operatorname{BuildTree}(I;k)\)

  1. if \(|I| > k\)
  2.       for each split dim \(j\) and split value \(s\)
  3.             Set   \(I_{j, s}^{+}=\left\{i \in I \mid x_j^{(i)} \geq s\right\}\)
  4.             Set   \(I_{j, s}^{-}=\left\{i \in I \mid x_j^{(i)}<s\right\}\)
  5.             Set.  \(\hat{y}_{j, s}^{+}=\)average \(_{i \in I_{j, s}^{+}}  y^{(i)}\)
  6.             Set   \(\hat{y}_{j, s}^{-}=\)average \(_{i \in I_{j, s}^{-}}  y^{(i)}\)
  7.             Set   \(E_{j, s}=\sum_{i \in I_{j, s}^{+}}\left(y^{(i)}-\hat{y}_{j, s}^{+}\right)^2+\sum_{i \in I_{j, s}^{-}}\left(y^{(i)}-\hat{y}_{j, s}^{-}\right)^2\)
  8.       Set   \(\left(j^*, s^*\right)=\arg \min _{j, s} E_{j, s}\)
  9. else
  10.       Set   \(\hat{y}=\) average \(_{i \in I}  y^{(i)}\)
  11.       return \(\operatorname{LEAF}\)(leave_value=\(\hat{y})\)
  12. return \(\operatorname{Node}\left(j^*, s^*, \operatorname{BuildTree}\left(I_{j^*, s^*}^{-}, k\right), \operatorname{BuildTree}\left(I_{j^*, s^*}^{+}, k\right)\right)\)

\(\operatorname{BuildTree}(I;k)\)

  1. if \(|I| > k\)
  2.       for each split dim \(j\) and split value \(s\)
  3.             Set   \(I_{j, s}^{+}=\left\{i \in I \mid x_j^{(i)} \geq s\right\}\)
  4.             Set   \(I_{j, s}^{-}=\left\{i \in I \mid x_j^{(i)}<s\right\}\)
  5.             Set.  \(\hat{y}_{j, s}^{+}=\)average \(_{i \in I_{j, s}^{+}}  y^{(i)}\)
  6.             Set   \(\hat{y}_{j, s}^{-}=\)average \(_{i \in I_{j, s}^{-}}  y^{(i)}\)
  7.             Set   \(E_{j, s}=\sum_{i \in I_{j, s}^{+}}\left(y^{(i)}-\hat{y}_{j, s}^{+}\right)^2+\sum_{i \in I_{j, s}^{-}}\left(y^{(i)}-\hat{y}_{j, s}^{-}\right)^2\)
  8.       Set   \(\left(j^*, s^*\right)=\arg \min _{j, s} E_{j, s}\)
  9. else
  10.       Set   \(\hat{y}=\) average \(_{i \in I}  y^{(i)}\)
  11.       return \(\operatorname{LEAF}\)(leave_value=\(\hat{y})\)
  12. return \(\operatorname{Node}\left(j^*, s^*, \operatorname{BuildTree}\left(I_{j^*, s^*}^{-}, k\right), \operatorname{BuildTree}\left(I_{j^*, s^*}^{+}, k\right)\right)\)

\(\operatorname{BuildTree}(I;k)\)

  1. if \(|I| > k\)
  2.       for each split dim \(j\) and split value \(s\)
  3.             Set   \(I_{j, s}^{+}=\left\{i \in I \mid x_j^{(i)} \geq s\right\}\)
  4.             Set   \(I_{j, s}^{-}=\left\{i \in I \mid x_j^{(i)}<s\right\}\)
  5.             Set.  \(\hat{y}_{j, s}^{+}=\)average \(_{i \in I_{j, s}^{+}}  y^{(i)}\)
  6.             Set   \(\hat{y}_{j, s}^{-}=\)average \(_{i \in I_{j, s}^{-}}  y^{(i)}\)
  7.             Set   \(E_{j, s}=\sum_{i \in I_{j, s}^{+}}\left(y^{(i)}-\hat{y}_{j, s}^{+}\right)^2+\sum_{i \in I_{j, s}^{-}}\left(y^{(i)}-\hat{y}_{j, s}^{-}\right)^2\)
  8.       Set   \(\left(j^*, s^*\right)=\arg \min _{j, s} E_{j, s}\)
  9. else
  10.       Set   \(\hat{y}=\) average \(_{i \in I}  y^{(i)}\)
  11.       return \(\operatorname{LEAF}\)(leave_value=\(\hat{y})\)
  12. return \(\operatorname{Node}\left(j^*, s^*, \operatorname{BuildTree}\left(I_{j^*, s^*}^{-}, k\right), \operatorname{BuildTree}\left(I_{j^*, s^*}^{+}, k\right)\right)\)

\(\operatorname{BuildTree}(I;k)\)

  1. if \(|I| > k\)
  2.       for each split dim \(j\) and split value \(s\)
  3.             Set   \(I_{j, s}^{+}=\left\{i \in I \mid x_j^{(i)} \geq s\right\}\)
  4.             Set   \(I_{j, s}^{-}=\left\{i \in I \mid x_j^{(i)}<s\right\}\)
  5.             Set.  \(\hat{y}_{j, s}^{+}=\)average \(_{i \in I_{j, s}^{+}}  y^{(i)}\)
  6.             Set   \(\hat{y}_{j, s}^{-}=\)average \(_{i \in I_{j, s}^{-}}  y^{(i)}\)
  7.             Set   \(E_{j, s}=\sum_{i \in I_{j, s}^{+}}\left(y^{(i)}-\hat{y}_{j, s}^{+}\right)^2+\sum_{i \in I_{j, s}^{-}}\left(y^{(i)}-\hat{y}_{j, s}^{-}\right)^2\)
  8.       Set   \(\left(j^*, s^*\right)=\arg \min _{j, s} E_{j, s}\)
  9. else
  10.       Set   \(\hat{y}=\) average \(_{i \in I}  y^{(i)}\)
  11.       return \(\operatorname{LEAF}\)(leave_value=\(\hat{y})\)
  12. return \(\operatorname{Node}\left(j^*, s^*, \operatorname{BuildTree}\left(I_{j^*, s^*}^{-}, k\right), \operatorname{BuildTree}\left(I_{j^*, s^*}^{+}, k\right)\right)\)

\(\operatorname{BuildTree}(I;k)\)

  1. if \(|I| > k\)
  2.       for each split dim \(j\) and split value \(s\)
  3.             Set   \(I_{j, s}^{+}=\left\{i \in I \mid x_j^{(i)} \geq s\right\}\)
  4.             Set   \(I_{j, s}^{-}=\left\{i \in I \mid x_j^{(i)}<s\right\}\)
  5.             Set.  \(\hat{y}_{j, s}^{+}=\)average \(_{i \in I_{j, s}^{+}}  y^{(i)}\)
  6.             Set   \(\hat{y}_{j, s}^{-}=\)average \(_{i \in I_{j, s}^{-}}  y^{(i)}\)
  7.             Set   \(E_{j, s}=\sum_{i \in I_{j, s}^{+}}\left(y^{(i)}-\hat{y}_{j, s}^{+}\right)^2+\sum_{i \in I_{j, s}^{-}}\left(y^{(i)}-\hat{y}_{j, s}^{-}\right)^2\)
  8.       Set   \(\left(j^*, s^*\right)=\arg \min _{j, s} E_{j, s}\)
  9. else
  10.       Set   \(\hat{y}=\) average \(_{i \in I}  y^{(i)}\)
  11.       return \(\operatorname{LEAF}\)(leave_value=\(\hat{y})\)
  12. return \(\operatorname{Node}\left(j^*, s^*, \operatorname{BuildTree}\left(I_{j^*, s^*}^{-}, k\right), \operatorname{BuildTree}\left(I_{j^*, s^*}^{+}, k\right)\right)\)

\(\operatorname{BuildTree}(I;k)\)

  1. if \(|I| > k\)
  2.       for each split dim \(j\) and split value \(s\)
  3.             Set   \(I_{j, s}^{+}=\left\{i \in I \mid x_j^{(i)} \geq s\right\}\)
  4.             Set   \(I_{j, s}^{-}=\left\{i \in I \mid x_j^{(i)}<s\right\}\)
  5.             Set.  \(\hat{y}_{j, s}^{+}=\)average \(_{i \in I_{j, s}^{+}}  y^{(i)}\)
  6.             Set   \(\hat{y}_{j, s}^{-}=\)average \(_{i \in I_{j, s}^{-}}  y^{(i)}\)
  7.             Set   \(E_{j, s}=\sum_{i \in I_{j, s}^{+}}\left(y^{(i)}-\hat{y}_{j, s}^{+}\right)^2+\sum_{i \in I_{j, s}^{-}}\left(y^{(i)}-\hat{y}_{j, s}^{-}\right)^2\)
  8.       Set   \(\left(j^*, s^*\right)=\arg \min _{j, s} E_{j, s}\)
  9. else
  10.       Set   \(\hat{y}=\) average \(_{i \in I}  y^{(i)}\)
  11.       return \(\operatorname{LEAF}\)(leave_value=\(\hat{y})\)
  12. return \(\operatorname{Node}\left(j^*, s^*, \operatorname{BuildTree}\left(I_{j^*, s^*}^{-}, k\right), \operatorname{BuildTree}\left(I_{j^*, s^*}^{+}, k\right)\right)\)

\(\operatorname{BuildTree}(I;k)\)

  1. if \(|I| > k\)
  2.       for each split dim \(j\) and split value \(s\)
  3.             Set   \(I_{j, s}^{+}=\left\{i \in I \mid x_j^{(i)} \geq s\right\}\)
  4.             Set   \(I_{j, s}^{-}=\left\{i \in I \mid x_j^{(i)}<s\right\}\)
  5.             Set.  \(\hat{y}_{j, s}^{+}=\)average \(_{i \in I_{j, s}^{+}}  y^{(i)}\)
  6.             Set   \(\hat{y}_{j, s}^{-}=\)average \(_{i \in I_{j, s}^{-}}  y^{(i)}\)
  7.             Set   \(E_{j, s}=\sum_{i \in I_{j, s}^{+}}\left(y^{(i)}-\hat{y}_{j, s}^{+}\right)^2+\sum_{i \in I_{j, s}^{-}}\left(y^{(i)}-\hat{y}_{j, s}^{-}\right)^2\)
  8.       Set   \(\left(j^*, s^*\right)=\arg \min _{j, s} E_{j, s}\)
  9. else
  10.       Set   \(\hat{y}=\) average \(_{i \in I}  y^{(i)}\)
  11.       return \(\operatorname{LEAF}\)(leave_value=\(\hat{y})\)
  12. return \(\operatorname{Node}\left(j^*, s^*, \operatorname{BuildTree}\left(I_{j^*, s^*}^{-}, k\right), \operatorname{BuildTree}\left(I_{j^*, s^*}^{+}, k\right)\right)\)

\(\operatorname{BuildTree}(I;k)\)

  1. if \(|I| > k\)
  2.       for each split dim \(j\) and split value \(s\)
  3.             Set   \(I_{j, s}^{+}=\left\{i \in I \mid x_j^{(i)} \geq s\right\}\)
  4.             Set   \(I_{j, s}^{-}=\left\{i \in I \mid x_j^{(i)}<s\right\}\)
  5.             Set.  \(\hat{y}_{j, s}^{+}=\)average \(_{i \in I_{j, s}^{+}}  y^{(i)}\)
  6.             Set   \(\hat{y}_{j, s}^{-}=\)average \(_{i \in I_{j, s}^{-}}  y^{(i)}\)
  7.             Set   \(E_{j, s}=\sum_{i \in I_{j, s}^{+}}\left(y^{(i)}-\hat{y}_{j, s}^{+}\right)^2+\sum_{i \in I_{j, s}^{-}}\left(y^{(i)}-\hat{y}_{j, s}^{-}\right)^2\)
  8.       Set   \(\left(j^*, s^*\right)=\arg \min _{j, s} E_{j, s}\)
  9. else
  10.       Set   \(\hat{y}=\) average \(_{i \in I}  y^{(i)}\)
  11.       return \(\operatorname{LEAF}\)(leave_value=\(\hat{y})\)
  12. return \(\operatorname{Node}\left(j^*, s^*, \operatorname{BuildTree}\left(I_{j^*, s^*}^{-}, k\right), \operatorname{BuildTree}\left(I_{j^*, s^*}^{+}, k\right)\right)\)

\(\operatorname{BuildTree}(I;k)\)

  1. if \(|I| > k\)
  2.       for each split dim \(j\) and split value \(s\)
  3.             Set   \(I_{j, s}^{+}=\left\{i \in I \mid x_j^{(i)} \geq s\right\}\)
  4.             Set   \(I_{j, s}^{-}=\left\{i \in I \mid x_j^{(i)}<s\right\}\)
  5.             Set.  \(\hat{y}_{j, s}^{+}=\)average \(_{i \in I_{j, s}^{+}}  y^{(i)}\)
  6.             Set   \(\hat{y}_{j, s}^{-}=\)average \(_{i \in I_{j, s}^{-}}  y^{(i)}\)
  7.             Set   \(E_{j, s}=\sum_{i \in I_{j, s}^{+}}\left(y^{(i)}-\hat{y}_{j, s}^{+}\right)^2+\sum_{i \in I_{j, s}^{-}}\left(y^{(i)}-\hat{y}_{j, s}^{-}\right)^2\)
  8.       Set   \(\left(j^*, s^*\right)=\arg \min _{j, s} E_{j, s}\)
  9. else
  10.       Set   \(\hat{y}=\) average \(_{i \in I}  y^{(i)}\)
  11.       return \(\operatorname{LEAF}\)(leave_value=\(\hat{y})\)
  12. return \(\operatorname{Node}\left(j^*, s^*, \operatorname{BuildTree}\left(I_{j^*, s^*}^{-}, k\right), \operatorname{BuildTree}\left(I_{j^*, s^*}^{+}, k\right)\right)\)

\(\operatorname{BuildTree}(I;k)\)

  1. if \(|I| > k\)
  2.       for each split dim \(j\) and split value \(s\)
  3.             Set   \(I_{j, s}^{+}=\left\{i \in I \mid x_j^{(i)} \geq s\right\}\)
  4.             Set   \(I_{j, s}^{-}=\left\{i \in I \mid x_j^{(i)}<s\right\}\)
  5.             Set.  \(\hat{y}_{j, s}^{+}=\)average \(_{i \in I_{j, s}^{+}}  y^{(i)}\)
  6.             Set   \(\hat{y}_{j, s}^{-}=\)average \(_{i \in I_{j, s}^{-}}  y^{(i)}\)
  7.             Set   \(E_{j, s}=\sum_{i \in I_{j, s}^{+}}\left(y^{(i)}-\hat{y}_{j, s}^{+}\right)^2+\sum_{i \in I_{j, s}^{-}}\left(y^{(i)}-\hat{y}_{j, s}^{-}\right)^2\)
  8.       Set   \(\left(j^*, s^*\right)=\arg \min _{j, s} E_{j, s}\)
  9. else
  10.       Set   \(\hat{y}=\) average \(_{i \in I}  y^{(i)}\)
  11.       return \(\operatorname{LEAF}\)(leave_value=\(\hat{y})\)
  12. return \(\operatorname{Node}\left(j^*, s^*, \operatorname{BuildTree}\left(I_{j^*, s^*}^{-}, k\right), \operatorname{BuildTree}\left(I_{j^*, s^*}^{+}, k\right)\right)\)

\(\operatorname{BuildTree}(I;k)\)

  1. if \(|I| > k\)
  2.       for each split dim \(j\) and split value \(s\)
  3.             Set   \(I_{j, s}^{+}=\left\{i \in I \mid x_j^{(i)} \geq s\right\}\)
  4.             Set   \(I_{j, s}^{-}=\left\{i \in I \mid x_j^{(i)}<s\right\}\)
  5.             Set   \(\hat{y}_{j, s}^{+}=\)average \(_{i \in I_{j, s}^{+}}  y^{(i)}\)
  6.             Set   \(\hat{y}_{j, s}^{-}=\)average \(_{i \in I_{j, s}^{-}}  y^{(i)}\)
  7.             Set   \(E_{j, s}=\sum_{i \in I_{j, s}^{+}}\left(y^{(i)}-\hat{y}_{j, s}^{+}\right)^2+\sum_{i \in I_{j, s}^{-}}\left(y^{(i)}-\hat{y}_{j, s}^{-}\right)^2\)
  8.       Set   \(\left(j^*, s^*\right)=\arg \min _{j, s} E_{j, s}\)
  9. else
  10.       Set   \(\hat{y}=\) average \(_{i \in I}  y^{(i)}\)
  11.       return \(\operatorname{LEAF}\)(leave_value=\(\hat{y})\)
  12. return \(\operatorname{Node}\left(j^*, s^*, \operatorname{BuildTree}\left(I_{j^*, s^*}^{-}, k\right), \operatorname{BuildTree}\left(I_{j^*, s^*}^{+}, k\right)\right)\)

\(\operatorname{BuildTree}(I;k)\)

  1. if \(|I| > k\)
  2.       for each split dim \(j\) and split value \(s\)
  3.             Set   \(I_{j, s}^{+}=\left\{i \in I \mid x_j^{(i)} \geq s\right\}\)
  4.             Set   \(I_{j, s}^{-}=\left\{i \in I \mid x_j^{(i)}<s\right\}\)
  5.             Set   \(\hat{y}_{j, s}^{+}=\)average \(_{i \in I_{j, s}^{+}}  y^{(i)}\)
  6.             Set   \(\hat{y}_{j, s}^{-}=\)average \(_{i \in I_{j, s}^{-}}  y^{(i)}\)
  7.             Set   \(E_{j, s}=\sum_{i \in I_{j, s}^{+}}\left(y^{(i)}-\hat{y}_{j, s}^{+}\right)^2+\sum_{i \in I_{j, s}^{-}}\left(y^{(i)}-\hat{y}_{j, s}^{-}\right)^2\)
  8.       Set   \(\left(j^*, s^*\right)=\arg \min _{j, s} E_{j, s}\)
  9. else
  10.       Set   \(\hat{y}=\) average \(_{i \in I}  y^{(i)}\)
  11.       return \(\operatorname{LEAF}\)(leave_value=\(\hat{y})\)
  12. return \(\operatorname{Node}\left(j^*, s^*, \operatorname{BuildTree}\left(I_{j^*, s^*}^{-}, k\right), \operatorname{BuildTree}\left(I_{j^*, s^*}^{+}, k\right)\right)\)

\(\operatorname{BuildTree}(I;k)\)

  1. if \(|I| > k\)
  2.       for each split dim \(j\) and split value \(s\)
  3.             Set   \(I_{j, s}^{+}=\left\{i \in I \mid x_j^{(i)} \geq s\right\}\)
  4.             Set   \(I_{j, s}^{-}=\left\{i \in I \mid x_j^{(i)}<s\right\}\)
  5.             Set   \(\hat{y}_{j, s}^{+}=\) majority \(_{i \in I_{j, s}^{+}}  y^{(i)}\)
  6.             Set   \(\hat{y}_{j, s}^{-}=\) majority \(_{i \in I_{j, s}^{-}}  y^{(i)}\)
  7.             Set   \(E_{j, s} = \frac{\left|I_{j, s}^{-}\right|}{|I|} \cdot H\left(I_{j, s}^{-}\right)+\frac{\left|I_{j, s}^{+}\right|}{|I|} \cdot H\left(I_{j, s}^{+}\right)\)
  8.       Set   \(\left(j^*, s^*\right)=\arg \min _{j, s} E_{j, s}\)
  9. else
  10.       Set   \(\hat{y}=\) majority \(_{i \in I}  y^{(i)}\)
  11.       return \(\operatorname{LEAF}\)(leave_value=\(\hat{y})\)
  12. return \(\operatorname{Node}\left(j^*, s^*, \operatorname{BuildTree}\left(I_{j^*, s^*}^{-}; k\right), \operatorname{BuildTree}\left(I_{j^*, s^*}^{+}; k\right)\right)\)

The only change from regression to classification:

  • Line 5, 6, 10, average becomes majority vote
  • Line 7 error more involved 

\(E_{j, s} = \frac{\left|I_{j, s}^{-}\right|}{|I|} \cdot H\left(I_{j, s}^{-}\right)+\frac{\left|I_{j, s}^{+}\right|}{|I|} \cdot H\left(I_{j, s}^{+}\right)\)

  • \({I}\)  = 9, \(\left|I_{j, s}^{-}\right|\) = 6, \(\left|I_{j, s}^{+}\right|\) = 3
  • So, \(E_{j, s} = \frac{6}{9} H\left(I_{j, s}^{-}\right) +\frac{3}{9}  H\left(I_{j, s}^{-}\right)\)

\(H\left(I_{j, s}^{-}\right) = -[\frac{3}{6} \log _2\left(\frac{3}{6}\right)+\frac{2}{6} \log _2\left(\frac{2}{6}\right)+\frac{1}{6} \log _2\left(\frac{1}{6}\right)]\)

\(H\left(I_{j, s}^{+}\right) = -[\frac{1}{3}  \log \left(\frac{1}{3}\right)+\frac{0}{3} \log _2\left(\frac{0}{3}\right)+\frac{2}{3} \log _2\left(\frac{2}{3}\right)]\)

\(H=-\sum_{\text {class }_c} \hat{P}_c (\log _2 \hat{P}_c)\)

 

  • One of multiple ways to make and use an ensemble
  • Bagging = Bootstrap aggregating
    • Training data \(\mathcal{D}_n\)

Bagging

 

  • One of multiple ways to make and use an ensemble
  • Bagging = Bootstrap aggregating
    • Training data \(\mathcal{D}_n\)
    • For \(b=1, \ldots, B\)
      • Draw a new "data set" \(\tilde{\mathcal{D}}_n^{(b)}\) of size \(n\) by sampling                           with replacement from \(\mathcal{D}_n\)
      • Train a predictor \(\hat{f}^{(b)}\) on \(\tilde{\mathcal{D}}_n^{(b)}\)
    • Return
      • For regression:   \(\hat{f}_{\text {bag }}(x)=\frac{1}{B} \sum_{b=1}^B \hat{f}^{(b)}(x)\)
      • For classification: predictor at a point is class with highest vote count at that point

Bagging

\tilde{\mathcal{D}}_n^{(b)}

Outline

  • Recap (transforermers)
  • Non-parametric models
    • interpretability
    • ease of use/simplicity
  • Decision tree
    • Terminologies
    • Learn via the BuildTree algorithm
      • Regression
      • Classification 
  • ​Nearest neighbor

Nearest neighbor classifier

Training: None (or rather: memorize the entire training data)

Predicting/testing: 

 

  • for a new data point \(x_{new}\) do:
    • find the \(k\) points in training data nearest to \(x_{new}\) 
      • For classification: predict label \(\hat{y_{new}}\) for \(x_{new}\) by taking a majority vote of the \(k\) neighbors's labels \(y\)
      • For regression: predict label \(\hat{y_{new}}\) for \(x_{new}\) by taking an average over the \(k\) neighbors' labels \(y\)
  • Hyperparameter: \(k\)
  • Also need
    • Distance metric (typically Euclidean or Manhattan distance)
    • A tie-breaking scheme (typically at random)

Thanks!

We'd love it for you to share some lecture feedback.

introml-sp24-lec9

By Shen Shen

introml-sp24-lec9

  • 52