Stefan Sommer
Professor at Department of Computer Science, University of Copenhagen
Faculty of Science, University of Copenhagen
Stefan Sommer and Alex Bronstein
Department of Computer Science, University of Copenhagen
Technion – Israel Institute of Technology
Geometric deep learning
deep learning with manifold target or manifold domain (Bronstein'17)
Objectives:
Sommer, Bronstein: Horizontal Flows and Manifold Stochastics in Geometric Deep Learning. TPAMI, 2020, doi: 10.1109/TPAMI.2020.2994507
Directional functions: f:OM→R
k∗f(u)=∫Rdk(−v)f(Pγ(x,uv)(u))dv
k1,k2 kernels with supp(ki)⊆Br(0), and f∈C3(OM,R)
Riemannian curvature: R(v,u)=−C([hu(v),hu(w)])
Theorem:
Non-commutativity:
k2∗(k1∗f)−k1∗(k2∗f)=
∫Rd∫Rdk2(−v2)k1(−v1)[hu(uv2),hu(uv1)]fdv1dv2+o(rd+1)
+ non-associtativity
hu=(π∗∣HuFM)−1
Hi(u)=hu(uei)
k∗f(u)=∫Rdk(−v)f(Pγ(x,uv)(u))dv
Non-commutativity:
k2∗(k1∗f)−k1∗(k2∗f)=
∫Rd∫Rdk2(−v2)k1(−v1)[hu(uv2),hu(uv1)]fdv1dv2+o(rd+1)
Stochastic development:
dUt=∑i=1dHi∘SdWti
Wt Euclidean Brownian motion
Xt=π(Ut) Riemannian Brownian motion
Xt supports stochastic parallel transport
Fix T>0: UT probability distribution in FM
... as opposed to geodesics only
Need measure on path space W([0,T],M)
k∗WTf(u)=∫k(−WT)f(UTu)P(dWt)=E[k(−WT)f(UTu)]
Manifold target:
Euclidean convolution:
k∗f(x)=y∈RargminE[k(x−z)∥y−f(z)∥2]
conv. from weighted Fréchet mean: (Pennec'06/Chakraborty'19/'20)
k∗f(x)=y∈MargminE[k(x,z)d(y,f(z))2)]
kernel: k:M×M→R, E[k(x,⋅)]=1
bridge sampling: target v
bridge sampling: target diag(M2)
Stochasticity analogous to deep Gaussian process NNs (Gal'16): y∣x,w=N(y^(x,w),τ−1)
code: http://bitbucket.com/stefansommer/jaxgeometry
slides: https://slides.com/stefansommer
References:
By Stefan Sommer
Professor at Department of Computer Science, University of Copenhagen