Sheep update

Discussion goals

  • Sheep study progress
  • Objectives under current funding
  • How to package / approach existing data

What we've done

(2013-Present)

1. Basic description

Cassirer et al. 2013 JAE

2. Acquired immunity

Plowright et al., 2013 PLoS One

3. Social compartmentalization

Manlove et al., 2014 PRSB

4. Persistence / phase transition

Manlove et al., almost in review

5. Who carries in the wild?

Plowright et al., in prep

6. New strain produces all-age die-off in infected herd

Cassirer et al., in prep

Current MAF Objectives

Objective 1

-ID groups with poor outcomes (Manlove et al., PRSB)

-Inference on carriage rates through time

-ID individual M.ovi carriers (Raina @ Lostine; Frances @ Asotin, Black Butte, Mtn View

- Ewe-group structure / contact patterns (Manlove field data)

        -> "vert" vs. "horizontal" transmission

        -> force of infection from different demographic groups

- Risk factor analysis

 

Objective 2: Mechanistic models of carrier etiology

 

Objective 3: Modeling control strategies

(Plowright et al., 2012 - May 2016)

Sheep society in the wild

Overview

Goal

Quantify social dynamics of bighorn nursery groups with disease

  • Associations (who's in a group together)
  • Interactions (who touches who)
  • Disease progression (symptoms + mortalities)

 

Methods

  1. Marked/sampled as many animals as possible overwinter (Frances)
  2. Followed up from ~April 20 - July 15
    • Locate everybody every day
    • Determine lamb status 
    • Focal follows & scan samples  
    • Symptoms & carcass recovery                                           

Data collected

Pop Year # Marked (total) # relocations # follows / ID'd animals followed Disease Status
Asotin 2013 12 / 32 554 infected no transmission
2014 17 / 25 1135 191 / 883 infected no transmission
2015 23 / 28 1444 239 / 1095 infected no transmission
Black Butte 2013 4 / 13 124 Outbreak
2014 11 / 13 (all recognizable) 718 155 / 581 New strain
Mtn View 2015
13 / 30 516 191 / 548 infected / no transmission
Breaks 2015 31 / 300 303 infected / no transmission

Asotin sampling intensity, 2014

Association networks

(edges = 2 animals in same place at same time)

Interaction network

(direct contacts)

Associations always high, but non-lamb interactions rare

Fission-fusion dynamics

Group sizes and structures

Lamb epidemics

Can we use social network data to draw inference about strength of different potential reservoirs?

Naive model

R = 1 + \lambda\nu + f(1-f)(\lambda\mu)^{2}
R=1+λν+f(1f)(λμ)2R = 1 + \lambda\nu + f(1-f)(\lambda\mu)^{2}
\lambda = \frac{ln[Y(t)]}{t} = \text{rate of exp.growth}
λ=ln[Y(t)]t=rate of exp.growth\lambda = \frac{ln[Y(t)]}{t} = \text{rate of exp.growth}
\nu = \text{serial interva: latent + infectiousl}
ν=serial interva: latent + infectiousl\nu = \text{serial interva: latent + infectiousl}
f = \text{ratio of mean of latent period to serial interval}
f=ratio of mean of latent period to serial intervalf = \text{ratio of mean of latent period to serial interval}
\nu = \text{Serial interval = latent + infectious}
ν=Serial interval = latent + infectious\nu = \text{Serial interval = latent + infectious}

Slope ~ 0.32

Serial interval ~ 25 days (10 + 15)

f ~ 2/5

P(mort) \sim \beta_0 + \beta_{Ewes} X_{ewes} + \beta_{YrEwes}X_{YrEwes} + \beta_{DryEwes}X_{DryEwes} + \epsilon
P(mort)β0+βEwesXewes+βYrEwesXYrEwes+βDryEwesXDryEwes+ϵP(mort) \sim \beta_0 + \beta_{Ewes} X_{ewes} + \beta_{YrEwes}X_{YrEwes} + \beta_{DryEwes}X_{DryEwes} + \epsilon
X_{Ewes} = \text{Sum of edgeweights to infected ewes}
XEwes=Sum of edgeweights to infected ewesX_{Ewes} = \text{Sum of edgeweights to infected ewes}
P(mort) \sim \beta_0 + \beta_{Ewes} X_{ewes} + \beta_{YrEwes}X_{YrEwes} + \beta_{DryEwes}X_{DryEwes} + \epsilon
P(mort)β0+βEwesXewes+βYrEwesXYrEwes+βDryEwesXDryEwes+ϵP(mort) \sim \beta_0 + \beta_{Ewes} X_{ewes} + \beta_{YrEwes}X_{YrEwes} + \beta_{DryEwes}X_{DryEwes} + \epsilon
X_{Ewes} = \text{Sum of edgeweights to infected ewes}
XEwes=Sum of edgeweights to infected ewesX_{Ewes} = \text{Sum of edgeweights to infected ewes}

Can we use information on time-varying contact rates to separate infection risk from chronic adults vs. infection risk from acute lambs?

Bipartite networks

SheepBehavior2015

By Kezia Manlove

SheepBehavior2015

Update on bighorn research through 2015, plus next steps

  • 545